Science is the knowledge of consequences, and dependence of one fact upon another.

Thomas Hobbes (1588-1679)

Review: Database Design

- **Requirements Analysis**
 - user needs; what must database do?
- **Conceptual Design**
 - high level descr (often done w/ER model)
- **Logical Design**
 - translate ER into DBMS data model
- **Schema Refinement**
 - consistency, normalization
- **Physical Design** - indexes, disk layout
- **Security Design** - who accesses what

The Evils of Redundancy

- **Redundancy**: root of several problems with relational schemas:
 - redundant storage, insert/delete/update anomalies
- **Functional dependencies**: a form of integrity constraint that can identify schemas with such problems and suggest refinements.
- **Main refinement technique**: decomposition
 - replacing ABCD with, say, AB and BCD, or ACD and ABD.
 - Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Functional Dependencies (FDs)

- A functional dependency \(X \rightarrow Y\) holds over relation schema \(R\) if, for every allowable instance \(r\) of \(R\):
 \[
 t_1 \in r, \ t_2 \in r, \ \pi_X(t_1) = \pi_X(t_2) \implies \pi_Y(t_1) = \pi_Y(t_2)
 \]
 (where \(t_1\) and \(t_2\) are tuples; \(X\) and \(Y\) are sets of attributes)
- **In other words**: \(X \rightarrow Y\) means
 Given any two tuples in \(r\), if the \(X\) values are the same, then the \(Y\) values must also be the same. (but not vice versa)
- **Read** \(\rightarrow\) **as** "determines"

FD’s Continued

- **An FD is a statement about all allowable relations.**
 - Must be identified based on semantics of application.
 - Given some instance \(r\) of \(R\), we can check if \(r\) violates some FD \(f\), but we cannot determine if \(f\) holds over \(R\).
- **Question**: How related to keys?
 - if "\(K \rightarrow \) all attributes of \(R\)" then \(K\) is a **superkey** for \(R\)
 (does not require \(K\) to be minimal.)
- **FDs are a generalization of keys.**

Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps:
 Hourly_Emps (\(\text{nn, name, lot, rating, wage_per_hr, hrs_per_wk}\))
- We sometimes denote a relation schema by listing the attributes: e.g., \(\text{SNLRWH}\)
- This is really the set of attributes \((S,N,L,R,W,H)\).
- Sometimes, we refer to the set of all attributes of a relation by using the relation name. e.g., "Hourly_Emps" for SNLRWH
- What are some FDs on Hourly_Emps?
 - \(\text{ssn is the key: } S \rightarrow \text{SNLRWH}\)
 - \(\text{rating determines wage_per_hr: } R \rightarrow W\)
 - \(\text{lot determines lot: } L \rightarrow L\) ("trivial" dependency)
Problems Due to \(R \rightarrow W \)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

- **Update anomaly:** Should we be allowed to modify \(W \) in only the 1st tuple of SNLWHR?
- **Insertion anomaly:** What if we want to insert an employee and don’t know the hourly wage for his or her rating? (or we get it wrong?)
- **Deletion anomaly:** If we delete all employees with rating 5, we lose the information about the wage for rating 5!

Detecting Redundancy

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Q: Why was \(R \rightarrow W \) problematic, but \(S \rightarrow W \) not?

Decomposing a Relation

- Redundancy can be removed by "chopping" the relation into pieces (vertically!)
- FD’s are used to drive this process.
 - \(R \rightarrow W \) is causing the problems, so decompose
 - SNLWHR into what relations?

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Refining an ER Diagram

- 1st diagram becomes:
 - Workers(S,N,L,D,S)
 - Departments(D,M,B,L)
- Suppose all workers in a dept are assigned the same lot: \(D \rightarrow L \)
- Redundancy fixed by:
 - Workers2(S,N,D,L)
 - Dept.Lots(D,L)
- Can fine-tune this:
 - Works_In(S,L,D)
 - Departments(D,M,B,L)

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - \(\text{title} \rightarrow \text{studio} \) and \(\text{star} \) implies \(\text{title} \rightarrow \text{studio} \) and \(\text{title} \rightarrow \text{star} \)
 - \(\text{title} \rightarrow \text{studio} \) and \(\text{title} \rightarrow \text{star} \) implies \(\text{title} \rightarrow \text{studio} \) and \(\text{star} \rightarrow \text{studio} \)
 - An FD \(f \) is implied by a set of FDs \(F \) if \(f \) holds whenever all FDs in \(F \) hold.

- \(F^+ \) is the closure of \(F \) is the set of all FDs that are implied by \(F \). (includes “trivial dependencies”)

Rules of Inference

- **Armstrong’s Axioms** (\(X, Y, Z \) are sets of attributes):
 - Reflexivity: If \(X \supseteq Y \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)

- These are sound and complete inference rules for FDs!
 - i.e., using AA you can compute all the FDs in \(F^+ \) and only these FDs.

- Some additional rules (that follow from AA):
 - Union: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
 - Decomposition: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
Example

- **Contracts**(cid, sid, jid, did, pid, qty, value), and:
 - C is the key: C → CSJDPQV
 - Proj purchases each part using single contract: JP → C
 - Dept purchases at most 1 part from a supplier: SD → P

Problem: Prove that SDJ is a key for Contracts

- JP → C, C → CSJDPQV imply JP → CSJDPQV (by transitivity) (shows that JP is a key)
- SD → P implies SDJ → JP (by augmentation)
- SDJ → JP, JP → CSJDPQV imply SDJ → CSJDPQV (by transitivity) thus SDJ is a key.

Q: can you now infer that SD → CSDPQV (i.e., drop J on both sides)?

No! FD inference is not like arithmetic multiplication.

Attribute Closure

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Typically, we just want to check if a given FD X → Y is in the closure of a set of FDs F. An efficient check:
 - Compute attribute closure of X (denoted X+) wrt F.
 - X+ = Set of all attributes A such that X → A is in F+
 - Repeat until no change: if there is an fd U → V in F, then add V to X+
- Check if Y is in X+
- Approach can also be used to find the keys of a relation.
 - If all attributes of R are in the closure of X then X is a superkey for R.
 - Q: How to check if X is a "candidate key"?

Attribute Closure (example)

- R = {A, B, C, D, E}
- F = { B → CD, D → E, B → A, E → C, AD → B }
- Is B → E in F+?
 - B+ = B
 - B+ = BCD
 - B+ = BCDA ... Yes! and B is a key for R too!
- Is D a key for R?
 - D+ = DE
 - D+ = DEC ... Nope!
- Is AD a key for R?
 - AD+ = AD
 - AD+ = ABD and B is a key, so Yes!
- Is AD a candidate key for R?
 - A+ = A, D+ = DEC
 - A,D not keys, so Yes!
- Is ADE a candidate key for R?
 - ADE+ = ADE ...
- Is ADE a candidate key for R?
 - No! AD is a key, so ADE is a superkey, but not a cand. key

Next Class...

- Normal forms and normalization
- Table decompositions