
Transaction Management Overview

R & G Chapter 16

There are three side effects of acid.
Enhanced long term memory,
decreased short term memory,
and I forget the third.

- Timothy Leary

Query Compiler

query

Execution Engine Logging/Recovery

LOCK TABLE

Concurrency Control

Storage Manager
BUFFER POOLBUFFERS

Buffer Manager

Schema Manager

Data Definition

DBMS: a set of cooperating software modules

Transaction Manager

transaction

Components of a DBMS

Concurrency Control & Recovery

• Very valuable properties of DBMSs
– without these, DBMSs would be much less useful

• Based on concept of transactions with ACID
properties

• Remainder of the lectures discuss these issues

• Concurrent execution of independent transactions
– utilization/throughput (“hide” waiting for I/Os.)
– response time
– fairness

• Example:

Statement of Problem

t0:
t1:
t2:
t3:
t4:
t5:

T1:
tmp1 := read(X)

tmp1 := tmp1 – 20

write tmp1 into X

T2:

tmp2 := read(X)

tmp2 := tmp2 + 10

write tmp2 into X

Statement of problem (cont.)

• Arbitrary interleaving can lead to
– Temporary inconsistency (ok, unavoidable)
– “Permanent” inconsistency (bad!)

• Need formal correctness criteria.

Definitions

• A program may carry out many operations on the
data retrieved from the database

• However, the DBMS is only concerned about what
data is read/written from/to the database.

• database - a fixed set of named data objects (A, B,
C, …)

• transaction - a sequence of read and write
operations (read(A), write(B), …)
– DBMS’s abstract view of a user program

Correctness criteria: The ACID properties

•• AA tomicity: All actions in the Xact happen, or none happen.

•• CC onsistency: If each Xact is consistent, and the DB starts
consistent, it ends up consistent.

•• II solation: Execution of one Xact is isolated from that of other
Xacts.

•• D D urability: If a Xact commits, its effects persist.

Atomicity of Transactions

• Two possible outcomes of executing a transaction:
– Xact might commit after completing all its actions
– or it could abort (or be aborted by the DBMS) after

executing some actions.

• DBMS guarantees that Xacts are atomic.
– From user’s point of view: Xact always either executes all

its actions, or executes no actions at all.

AA

Mechanisms for Ensuring Atomicity

• One approach: LOGGING
– DBMS logs all actions so that it can undo the

actions of aborted transactions.
• Another approach: SHADOW PAGES

– (ask me after class if you’re curious)

• Logging used by modern systems, because of
need for audit trail and for efficiency reasons.

AA Transaction Consistency

• “Consistency” - data in DBMS is accurate in modeling
real world and follows integrity constraints

• User must ensure transaction consistent by itself
– I.e., if DBMS consistent before Xact, it will be after also

consistent
database

S1

consistent
database

S2

transaction T

•Key point:

CC

Transaction Consistency (cont.)

• Recall: Integrity constraints
– must be true for DB to be considered consistent
– Examples:
1. FOREIGN KEY R.sid REFERENCES S
2. ACCT-BAL >= 0

• System checks ICs and if they fail, the transaction
rolls back (i.e., is aborted).
– Beyond this, DBMS does not understand the semantics of

the data.
– e.g., it does not understand how interest on a bank

account is computed

CC Isolation of Transactions
• Users submit transactions, and
• Each transaction executes as if it was running by

itself.
– Concurrency is achieved by DBMS, which interleaves

actions (reads/writes of DB objects) of various
transactions.

• Many techniques have been developed. Fall into two
basic categories:
– Pessimistic – don’t let problems arise in the first place
– Optimistic – assume conflicts are rare, deal with them

after they happen.

II

Example
• Consider two transactions (Xacts):

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

• 1st xact transfers $100 from B’s account to A’s
• 2nd credits both accounts with 6% interest.
• Assume at first A and B each have $1000. What

are the legal outcomes of running T1 and T2???
• $2000 *1.06 = $2120

• There is no guarantee that T1 will execute before
T2 or vice-versa, if both are submitted together.
But, the net effect must be equivalent to these two
transactions running serially in some order.

II Example (Contd.)
• Legal outcomes: A=1166,B=954 or A=1160,B=960
• Consider a possible interleaved schedule:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

 This is OK (same as T1;T2). But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

• Result: A=1166, B=960; A+B = 2126, bank loses $6
• The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

II

Formal Properties of Schedules

• Serial schedule: Schedule that does not interleave the
actions of different transactions.

• Equivalent schedules: For any database state, the
effect of executing the first schedule is identical to the
effect of executing the second schedule.

• Serializable schedule: A schedule that is equivalent to
some serial execution of the transactions.

(Note: If each transaction preserves consistency, every
serializable schedule preserves consistency.)

II Anomalies with Interleaved Execution

• Reading Uncommitted Data (WR Conflicts, “dirty
reads”):

• Unrepeatable Reads (RW Conflicts):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

II

Anomalies (Continued)

• Overwriting Uncommitted Data (WW Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

II Lock-Based Concurrency Control

• Here’s a simple way to allow concurrency but avoid the anomalies
just described…

• Strict Two-phase Locking (Strict 2PL) Protocol:
– Each Xact must obtain an S (shared) lock on object before reading, and

an X (exclusive) lock on object before writing.
– System can obtain these locks automatically
– Lock rules:

• If an Xact holds an X lock on an object, no other Xact can acquire a lock
(S or X) on that object

• If an Xact holds an S lock, no other Xact can get an X lock on that object.

– Two phases: acquiring locks, and releasing them
• No lock is ever acquired after one has been released
• All locks held by a transaction are released when the xact completes

• Strict 2PL allows only serializable schedules.

II

Aborting a Transaction (i.e., Rollback)

• If an xact Ti aborted, all actions must be undone.
• Also, if Tj reads object last written by Ti, Tj must be

aborted!
– Most systems avoid such cascading aborts by releasing

locks only at EOT (i.e., strict locking).
– If Ti writes an object, Tj can read this only after Ti

finishes.

• To undo actions of an aborted transaction, DBMS
maintains log which records every write.

• Log also used to recover from system crashes:
All active Xacts at time of crash are aborted when system

comes back up.

The Log
• Log consists of “records” that are written sequentially.

– Typically chained together by Xact id
– Log is often archived on stable storage.

• Need for UNDO and/or REDO depend on Buffer Mgr.
– UNDO required if: uncommitted data can overwrite stable version of

committed data (STEAL buffer management).
– REDO required if: xact can commit before all its updates are on disk

(NO FORCE buffer management).
• The following actions are recorded in the log:

– if Ti writes an object, write a log record with:
• If UNDO required need “before image”
• IF REDO required need “after image”.

– Ti commits/aborts: a log record indicating this action.

Logging (cont.)

• Write-Ahead Logging protocol
– Log record must go to disk before the changed page!

• implemented via a handshake between log manager
and the buffer manager.

– All log records for a transaction (including its commit
record) must be written to disk before the transaction is
considered “Committed”.

• All logging and CC-related activities are handled
transparently by the DBMS.

(Review) Goal: The ACID properties

•• AA tomicity: All actions in the Xact happen, or none happen.

•• CC onsistency: If each Xact is consistent, and the DB starts
consistent, it ends up consistent.

•• II solation: Execution of one Xact is isolated from that of other
Xacts.

•• D D urability: If a Xact commits, its effects persist.

What happens if system crashes between
commit and flushing modified data to disk ?

Durability - Recovering From a Crash

• Three phases:
– Analysis: Scan the log (forward from the most recent

checkpoint) to identify all Xacts that were active at the time
of the crash.

– Redo: Redo updates as needed to ensure that all logged
updates are in fact carried out and written to disk.

– Undo: Undo writes of all Xacts that were active at the
crash, working backwards in the log.

• At the end – all committed updates and only those
updates are reflected in the database.

• Some care must be taken to handle the case of a crash
occurring during the recovery process!

DD Summary

• Concurrency control and recovery are among the
most important functions provided by a DBMS.

• Concurrency control is automatic
– System automatically inserts lock/unlock requests and

schedules actions of different Xacts
– Property ensured: resulting execution is equivalent to

executing the Xacts one after the other in some order.

• Write-ahead logging (WAL) and the recovery
protocol are used to:
1. undo the actions of aborted transactions, and
2. restore the system to a consistent state after a crash.

