Announcements

- Slides, notes, books
 - Slides are always available before class
 - You may want to print them out and take notes on them!

- Midterm: 10/10
 - Cheat sheet only, one page, make your own

- Need a partner? Stay after class.

- Assignment 1.2 is up (due 9/19)
Today

- More CSPs
 - Applications
 - Tree Algorithms
 - Cutset Conditioning

- Local Search

Reminder: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a subset of the possible tuples)

- Unary Constraints
- Binary Constraints
- N-ary Constraints
Example: Boolean Satisfiability

- Given a Boolean expression, is it satisfiable?
- Very basic problem in computer science

\[p_1 \land (p_2 \rightarrow p_3) \land ((\neg p_1 \land \neg p_3) \rightarrow \neg p_2) \land (p_1 \lor p_3) \]

- Turns out you can always express in 3-CNF

\[(p_1) \land (\neg p_2 \lor p_3) \land (p_1 \lor p_3 \lor \neg p_2) \land (p_1 \lor p_2 \lor p_3)\]

- 3-SAT: find a satisfying truth assignment

Example: 3-SAT

- Variables: \(p_1, p_2, \ldots, p_n \)
- Domains: \{true, false\}
- Constraints:

\[
\begin{align*}
& p_i \lor p_j \lor p_k \\
& \neg p_{i'} \lor p_{j'} \lor p_{k'} \\
& \ldots \\
& p_{i'''} \lor \neg p_{j'''} \lor \neg p_{k'''}
\end{align*}
\]

Implicitly conjoined (all clauses must be satisfied)
CSPs: Queries

- Types of queries:
 - Legal assignment (last class)
 - All assignments
 - Possible values of some query variable(s) given some evidence (partial assignments)

Example: Fault Diagnosis

- Fault networks:
 - Variables?
 - Domains?
 - Constraints?

- Various ways to query, given symptoms
 - Some cause (abduction)
 - Simplest cause
 - All possible causes
 - What test is most useful?
 - Prediction: cause to effect

- We'll see this idea again with Bayes’ nets
Example: N-Queens

- **Formulation 2:**
 - **Variables:** Q_k
 - **Domains:** $\{11, 12, 13, \ldots 21, \ldots NN\}$
 - **Constraints:**
 \[
 \forall i, j \ (Q_i, Q_j) \in \{(11,23), (11,24), \ldots \}
 \]
 \[
 \forall i, j \ \text{non-threatening}(Q_i, Q_j)
 \]

Reminder: Consistency

- **Basic solution:** DFS / backtracking
 - Add a new assignment
 - Check for violations

- **Forward checking:**
 - Pre-filter unassigned domains after every assignment
 - Only remove values which conflict with current assignments

- **Arc consistency**
 - We only defined it for binary CSPs
 - Check for impossible values on all pairs of variables, prune them
 - Run (or not) after each assignment before recursing
 - A pre-filter, not search!
Arc Consistency

```plaintext
function AC-3(csp) returns the CSP, possibly with reduced domains
    inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
    local variables: queue, a queue of arcs, initially all the arcs in csp
    while queue is not empty do
        (X_i, X_j) ← REMOVE-FIRST(queue)
        if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then
            for each X_k in NEIGHBORS[X_i] do
                add (X_k, X_i) to queue

function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds
    removed ← false
    for each x in DOMAIN[X_i] do
        if no value y in DOMAIN[X_j] allows (x,y) to satisfy the constraint X_i ↔ X_j
           then delete x from DOMAIN[X_i]; removed ← true
    return removed
```

- [DEMO]

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

What went wrong here?
K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute
- (You need to know the k=2 algorithm)

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. path consistency)
Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
 - Worst-case solution cost is $O((n/c)(d^c))$, linear in n
 - E.g., $n = 80$, $d = 2$, $c = 20$
 - $2^{80} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.
Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering

- For $i = n : 2$, apply RemoveInconsistent($\text{Parent}(X_i), X_i$)
- For $i = 1 : n$, assign X_i consistently with Parent(X_i)
- Runtime: $O(n \, d^2)$ (why?)

Why does this work?

Claim: After each node is processed leftward, all nodes to the right can be assigned in any way consistent with their parent.

Proof: Induction on position

Why doesn't this algorithm work with loops?

Note: we’ll see this basic idea again with Bayes’ nets and call it belief propagation
Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O\left((d^c) (n-c) d^2 \right)$, very fast for small c

Types of Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - *Incremental formulations*

- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - *Complete-state formulations*
 - Iterative improvement algorithms
Iterative Algorithms for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned.

- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators *reassign* variable values

- Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hillclimb with $h(n) = \text{total number of violated constraints}$

Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $h(n) = \text{number of attacks}$
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]

CSP Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice
Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can’t make it better
- Generally much more efficient (but incomplete)

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
- What’s good about it?
Hill Climbing Diagram

- Random restarts?
- Random sideways steps?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
 schedule, a mapping from time to “temperature”
local variables: current, a node
 next, a node
 T, a “temperature” controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for $t ← 1$ to ∞ do
 $T ←$ schedule[t]
 if $T = 0$ then return current
 next ← a randomly selected successor of current
 $\Delta E ←$ VALUE[next] − VALUE[current]
 if $\Delta E > 0$ then current ← next
 else current ← next only with probability $e^{\Delta E/T}$
Simulated Annealing

- **Theoretical guarantee:**
 - Stationary distribution: \(p(x) \propto e^{-\frac{E(x)}{kT}} \)
 - If \(T \) decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways

Beam Search

- Like greedy search, but keep \(K \) states at all times:

 ![Greedy Search](Greedy.png) ![Beam Search](Beam.png)

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- Why do we still need optimal methods?
Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation
- Probably the most misunderstood, misapplied (and even maligned) technique around!

Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?
Continuous Problems

- Placing airports in Romania
 - States: \((x_1, y_1, x_2, y_2, x_3, y_3)\)
 - Cost: sum of squared distances to closest city

Gradient Methods

- How to deal with continuous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
 - E.g. force integral coordinates
- Continuous optimization
 - E.g. gradient ascent

\[
\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)
\]

\[x \leftarrow x + \alpha \nabla f(x)\]