Announcements

- Project 1.2 is up (Single-Agent Pacman)
 - Critical update: make sure you have the most recent version!

- Reminder: you are allowed to work with a partner!

- Change to John’s section: M 3-4pm now in 4 Evans
Today

- Local search
- Robot motion planning

Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can’t make it better
- Generally much more efficient (but incomplete)
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit

- Why can this be a terrible idea?
 - Complete?
 - Optimal?

- What’s good about it?

Hill Climbing Diagram

- Random restarts?
- Random sideways steps?
Iterative Algorithms for CSPs

- Hill-climbing, simulated annealing typically work with “complete” states, i.e., all variables assigned.

- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values

- Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hillclimb with \(h(n) = \text{total number of violated constraints} \)

Example: 4-Queens

- States: 4 queens in 4 columns (\(4^4 = 256\) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \text{number of attacks} \)
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to “temperature”
local variables: current, a node
                next, a node
                T, a “temperature” controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE(problem))
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE(next) - VALUE(current)
    if ΔE > 0 then current ← next
    else current ← next only with probability e^{ΔE/T}
```
Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution: \(p(x) \propto e^{\frac{E(x)}{kT}} \)
 - If \(T \) decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Beam Search

- Like greedy search, but keep \(K \) states at all times:

 [Diagram of Greedy Search and Beam Search]

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- Why do we still need optimal methods?
Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation
- Probably the most misunderstood, misapplied (and even maligned) technique around!

Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?
Continuous Problems

- Placing airports in Romania
 - States: \((x_1, y_1, x_2, y_2, x_3, y_3)\)
 - Cost: sum of squared distances to closest city

Gradient Methods

- How to deal with continuous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
 - E.g. force integral coordinates
- Continuous optimization
 - E.g. gradient ascent
 \[
 \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3} \right)
 \]
 \[
 x \leftarrow x + \alpha \nabla f(x)
 \]
Robot motion planning!

Robotics Tasks

- **Motion planning (today)**
 - How to move from A to B
 - Known obstacles
 - Offline planning

- **Localization (later)**
 - Where exactly am I?
 - Known map
 - Ongoing localization (why?)

- **Mapping (much later)**
 - What’s the world like?
 - Exploration / discovery
 - SLAM: simultaneous localization and mapping
Mobile Robots

- High-level objectives: move around obstacles, etc
- Low-level: fine motor control to achieve motion
- Why is this hard?

\[\text{Start Configuration} \quad \rightarrow \quad \text{Goal Configuration} \]
\[\text{Immovable Obstacles} \]

Manipulator Robots

- High-level goals: reconfigure environment
- Low-level: move from configuration A to B (point-to-point motion)
 - Why is this already hard?
- Also: compliant motion
Sensors and Effectors

- **Sensors vs. Percepts**
 - Agent programs receive percepts
 - Agent bodies have sensors
 - Includes proprioceptive sensors
 - Real world: sensors break, give noisy answers, miscalibrate, etc.

- **Effectors vs. Actuators**
 - Agent programs have actuators (control lines)
 - Agent bodies have effectors (gears and motors)
 - Real-world: wheels slip, motors fail, etc.

Degrees of Freedom

- The *degrees of freedom* are the numbers required to specify a robot's configuration
- **Positional DOFs:**
 - \((x, y, z)\) of free-flying robot
 - direction robot is facing
- **Effector DOFs**
 - Arm angle
 - Wing position
- **Static state:** robot shape and position
- **Dynamic state:** derivatives of static DOFs (why have these?)

Question: How many DOFs for a polyhedron free-flying in 3D space?
Example

- How many DOFs?
 - What are the natural coordinates for specifying the robot's configuration?
 - These are the configuration space coordinates
 - What are the natural coordinates for specifying the effector tip’s position?
 - These are the work space coordinates

Example

- How many DOFs?
 - How does this compare to your arm?
 - How many are required for arbitrary positioning of end-effector?
Holonomicity

- **Holonomic robots** control all their DOFs (e.g. manipulator arms)
 - Easier to control
 - Harder to build

- **Non-holonomic** robots do not directly control all DOFs (e.g. a car)

Configuration Space

- **Workspace:**
 - The world’s (x, y) system
 - Obstacles specified here

- **Configuration space**
 - The robot’s state
 - Planning happens here
 - Obstacles can be projected to here
Kinematics

- Kinematics
 - The mapping from configurations to workspace coordinates
 - Generally involves some trigonometry
 - Usually pretty easy

- Inverse Kinematics
 - The inverse: effector positions to configurations
 - Usually non-unique (why?)

\[x = r \cos(\alpha) \]
\[y = r \sin(\alpha) \]

Forward kinematics

Configuration Space

- Configuration space
 - Just a coordinate system
 - Not all points are reachable / legal
- Legal configurations:
 - No collisions
 - No self-intersection

\(r \in [1, 4] \)

\((3\pi/4, 2)\) \((\pi/4, 2)\)
Obstacles in C-Space

- What / where are the obstacles?
- Remaining space is *free space*

More Obstacles
Topology

- You very quickly get into issues of topology:
 - Point robot in 3D: \(\mathbb{R}^3 \)
 - Directional robot with fixed position in 3D: \(\text{SO}(3) \)
 - Two rotational-jointed robot in 2D: \(S_1 \times S_1 \)
- For the present purposes, we’ll just ignore these issues
- In practice, you have to deal with it properly

Example: 2D Polygons

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Configuration Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Workspace 1]</td>
<td>![Configuration 1]</td>
</tr>
<tr>
<td>![Workspace 2]</td>
<td>![Configuration 2]</td>
</tr>
</tbody>
</table>
Example: Rotation

Example: A Less Simple Arm
Summary

- Degrees of freedom
- Legal robot configurations form configuration space
- Obstacles have complex images in c-space

Motion as Search

- Motion planning as path-finding problem
 - Problem: configuration space is continuous
 - Problem: under-constrained motion
 - Problem: configuration space can be complex

Why are there two paths from 1 to 2?
Decomposition Methods

- Break c-space into discrete regions
- Solve as a discrete problem

Exact Decomposition?

- With polygon obstacles: decompose exactly
- Problems?
 - Doesn’t scale at all
 - Doesn’t work with complex, curved obstacles
Approximate Decomposition

- Break c-space into a grid
 - Search (A*, etc)
 - What can go wrong?
 - If no path found, can subdivide and repeat

- Problems?
 - Still scales poorly
 - Incomplete*
 - Wiggly paths

Hierarchical Decomposition

- Actually used in practical systems

- But:
 - Not optimal
 - Not complete
 - Still hopeless above a small number of dimensions
Skeletonization Methods

- Decomposition methods turn configuration space into a grid.
- Skeletonization methods turn it into a set of points, with preset linear paths between them.

Visibility Graphs

- **Shortest paths:**
 - No obstacles: straight line
 - Otherwise: will go from vertex to vertex
 - Fairly obvious, but somewhat awkward to prove
- **Visibility methods:**
 - All free vertex-to-vertex lines (visibility graph)
 - Search using, e.g., A^*
 - Can be done in $O(n^3)$ easily, $O(n^2 \log(n))$ less easily
- **Problems?**
 - Bang, screech!
 - Not robust to control errors
 - Wrong kind of optimality?
Voronoi Decomposition

- Voronoi regions: points colored by closest obstacle

- Voronoi diagram: borders between regions
 - Can be calculated efficiently for points (and polygons) in 2D
 - In higher dimensions, some approximation methods

Voronoi Decomposition

- **Algorithm:**
 - Compute the Voronoi diagram of the configuration space
 - Compute shortest path (line) from start to closest point on Voronoi diagram
 - Compute shortest path (line) from goal to closest point on Voronoi diagram.
 - Compute shortest path from start to goal along Voronoi diagram

- **Problems:**
 - Hard over 2D, hard with complex obstacles
 - Can do weird things:
Probabilistic Roadmaps

- Idea: just pick random points as nodes in a visibility graph
- This gives probabilistic roadmaps
 - Very successful in practice
 - Lets you add points where you need them
 - If insufficient points, incomplete, or weird paths

Roadmap Example
Potential Field Methods

- So far: implicit preference for short paths
- Rational agent should balance distance with risk!
- Idea: introduce cost for being close to an obstacle
- Can do this with discrete methods (how?)
- Usually most natural with continuous methods

Potential Fields

- Cost for:
 - Being far from goal
 - Being near an obstacle
- Go downhill
- What could go wrong?