CS 188: Artificial Intelligence
Fall 2007

Lecture 3: A* Search

Dan Klein – UC Berkeley
Many slides over the course adapted from either Stuart Russell or Andrew Moore

Announcements

- Sections:
 - New section 106: Tu 5-6pm
 - You can go to any section, if there’s space
 - Sections start this week

- Homework
 - Project 1 on the web, due 9/12
 - New written homework format:
 - One or two questions handed out end of section (and online)
 - Due the next week in section, graded check / no check
 - Each assignment 1% of grade, cap of 10%, so can skip at least one week, depends on how many there are
 - Solve in groups of any size, write up alone

Today

- A* Search
- Heuristic Design
- Local Search

Recap: Search

- Search problems:
 - States (configurations of the world)
 - Successor functions, costs, start and goal tests

- Search trees:
 - Nodes: represent paths / plans
 - Paths have costs (sum of action costs)
 \[g(n) = \sum_{x \rightarrow y \in n} \text{cost}(x \rightarrow y) \]
 - Strategies differ (only) in fringe management

General Tree Search

function TREE-SEARCH (problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end loop

Expanding includes incrementing the path cost

Uniform Cost

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every “direction”
 - No information about goal location

\[c \leq 1 \]
\[c \leq 2 \]
\[c \leq 3 \]
Best First

- **Strategy**: expand nodes which appear closest to goal
 - **Heuristic**: function which maps states to distance

- **A common case**:
 - Best-first takes you straight to the (wrong) goal

- **Worst case**: like a badly guided DFS

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost $g(n)$
- Best-first orders by goal proximity, or forward cost $h(n)$

- A^* Search orders by the sum: $f(n) = g(n) + h(n)$

Example: Heuristic Function

- Heuristic: function which maps states to distance

Is A^* Optimal?

- **What went wrong?**
- Actual bad goal cost > estimated good goal cost
- We need estimates to be less than actual costs!

When should A^* terminate?

- Should we stop when we enqueue a goal?
 - No: only stop when we dequeue a goal

Admissible Heuristics

- A heuristic is admissible (optimistic) if:
 \[h(n) \leq h^*(n) \]
 where $h^*(n)$ is the true cost to a nearest goal

- E.g. Euclidean distance on a map problem

- Coming up with admissible heuristics is most of what’s involved in using A^* in practice.
Optimality of A*: Blocking

Proof:
- What could go wrong?
- We’d have to have to pop a suboptimal goal G off the fringe before G*
- This can’t happen:
 - Imagine a suboptimal goal G is on the queue
 - Some node n which is a subpath of G* must be on the fringe (why?)
 - n will be popped before G

\[f(n) < g(G^*), \]
\[q(G^*) < q(G), \]
\[q(G) = f(G^*), \]
\[f(n) < f(G) \]

UCS vs A* Contours

- Uniform-cost expanded in all directions
- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Properties of A*

<table>
<thead>
<tr>
<th>Uniform Cost</th>
<th>A*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Admissible Heuristics

- Most of the work is in coming up with admissible heuristics
- Inadmissible heuristics are often quite effective (especially when you have no choice)
- Very common hack: use \(\alpha \times h(n) \) for admissible \(h, \alpha > 1 \) to generate a faster but less optimal inadmissible \(h' \) from admissible \(h \)

Example: 8 Puzzle

- What are the states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

- Number of tiles misplaced?
- Why is it admissible?
- \(h(\text{start}) = 8 \)
- This is a relaxed problem heuristic

<table>
<thead>
<tr>
<th>Start State</th>
<th>Goal State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Number of Tiles</th>
<th>Average Nodes Expanded When Optimal Path Has Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>13</td>
<td>6,300</td>
</tr>
<tr>
<td>12</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>
8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why admissible?
- \(h(\text{start}) = 3 + 1 + 2 + \ldots = 18 \)

<table>
<thead>
<tr>
<th>Average nodes expanded when optimal path has length...</th>
</tr>
</thead>
<tbody>
<tr>
<td>.4 steps</td>
</tr>
<tr>
<td>TILES</td>
</tr>
<tr>
<td>MAN-HATTAN</td>
</tr>
</tbody>
</table>

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes?
 - What’s wrong with it?
 - With A*: a trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

- Dominance: \(h_a(n) \geq h_c(n) \)
- \(\forall n : h_a(n) > h_c(n) \)
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 - \(h(n) = \max(h_a(n), h_b(n)) \)
 - Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Course Scheduling

- From the university’s perspective:
 - Set of courses \(c_1, c_2, \ldots, c_n \)
 - Set of room / times \(r_1, r_2, \ldots, r_m \)
 - Each pairing \((c_i, r_j) \) has a cost \(w_{ij} \)
 - What’s the best assignment of courses to rooms?
 - States: list of pairings
 - Actions: add a legal pairing
 - Costs: cost of the new pairing
 - Admissible heuristics?
 - (Who can think of a cs170 answer to this problem?)

Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

Tree Search: Extra Work?

- Failure to detect repeated states can cause exponentially more work. Why?
Graph Search

- In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

![Graph Search Diagram]

Very simple fix: never expand a state twice

function GRAPHS-SEARCH(problem, fringe) returns a solution, or failure
 closed ← an empty set
 fringe ← INSERT(MAKE-NODE(I N I T I A L - S T A T E [problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(node) then return node
 if STATE[node] is not in closed then
 add STATE[node] to closed
 fringe ← INSERTALL(EXPAND[node, problem], fringe)
 end

Can this wreck completeness? Optimality?

Optimality of A* Graph Search

- Consider what A* does:
 - Expands nodes in increasing total f value (f-contours)
 - Proof idea: optimal goals have lower f value, so get expanded first

We made a stronger assumption than in the last proof… What?

Consider what A* does:

- Expands nodes in increasing total f value (f-contours)
- Proof idea: optimal goals have lower f value, so get expanded first

Optimality of A* Graph Search

- Consider what A* does:
 - Expands nodes in increasing total f value (f-contours)
 - Proof idea: optimal goals have lower f value, so get expanded first

Consistency

- Wait, how do we know we expand in increasing f value?
- Couldn’t we pop some node n, and find its child n’ to have lower f value?
- YES:

 \[g = 10 \]
 \[h = 0 \]
 \[h = 8 \]

 What can we assume to prevent these inversions?
- Consistency: \(c(n, a, n’) \geq h(n) - h(n’) \)
- Real cost always exceeds reduction in heuristic

Optimality

- Tree search:
 - A* optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (\(h = 0 \))

- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (\(h = 0 \) is consistent)

- In general, natural admissible heuristics tend to be consistent

Summary: A*

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible heuristics
- Heuristic design is key: often use relaxed problems
Large Scale Problems

- What states get expanded?
 - All states with f-cost less than optimal goal cost
 - How far “in every direction” will this be?
 - Intuition: depth grows like the heuristic “gap”:
 - $h(n) = |2 - n|$
 - Gap usually at least linear in problem size
 - Work exponential in depth

- In huge problems, often A* isn’t enough
 - State space just too big
 - Can’t visit all states with f less than optimal
 - Often, can’t even store the entire fringe

- Solutions
 - Better heuristics
 - Beam search (limited fringe size)
 - Greedy hill-climbing (fringe size = 1)

Limited Memory Options

- Hill-Climbing Search:
 - Only “best” node kept around, no fringe!
 - Usually prioritize successor choice by h (greedy hill climbing)
 - Compare to greedy backtracking, which still has fringe

- Beam Search (Limited Memory Search)
 - In between: keep K nodes in fringe
 - Dump lowest priority nodes as needed
 - Can prioritize by h alone (greedy beam search), or h+g (limited memory A*)
 - Why not applied to UCS?
 - We’ll return to beam search later…

- No guarantees once you limit the fringe size!