Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": any old data structure
 - Goal test: any function over states
 - Successors: any map from states to sets of states

- Constraint satisfaction problems (CSPs):
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
 - Simple example of a formal representation language
 - Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- Formulation 1:
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints
 \[
 \forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}
 \forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}
 \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}
 \forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}
 \sum_{i,j} X_{ij} = N
 \]

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{\text{red}, \text{green}, \text{blue}\}$
- Constraints: adjacent regions must have different colors
 \[
 WA \neq NT
 \forall (WA, NT) \in \{(\text{red,green}), (\text{red,blue}), (\text{green,red})\}
 \]
- Solutions are assignments satisfying all constraints, e.g.:
 \[
 \{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}
 \]

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP
 - Look at all intersections
 - Adjacent intersections impose constraints on each other
Assume all objects:
- Have no shadows or cracks
- Three-faced vertices
- "General position": no junctions change with small movements of the eye.

Then each line on image is one of the following:
- Boundary line (edge of an object) (→) with right hand of arrow denoting "solid" and left hand denoting "space"
- Interior convex edge (+)
- Interior concave edge (−)

Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- Variables: vertices
- Domains: junction labels
- Constraints: both ends of a line should have the same label

Constraint Graphs
- Binary CSP: each constraint relates (at most) two variables
- Constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search.
 E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic
- Variables:
 \[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \]
 \[T \ W \ O \]
- Domains:
 \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- Constraints:
 \[\text{alldiff}(F, T, U, W, R, O) \]
 \[O + O = R + 10 \cdot X_1 \]

Varieties of CSPs
- Discrete Variables
 - Finite domains
 - Size \(d \) means \((d^n) \) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Need a constraint language, e.g., StartJob, \(x < \text{StartJob}_y \)
 - Linear constraints solvable, nonlinear undecidable
- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods
 (see cs170 for a bit of this theory)

Varieties of Constraints
- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 \[SA \neq \text{green} \]
 - Binary constraints involve pairs of variables:
 \[SA \neq WA \]
 - Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints
 - Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Transportation scheduling
- Factory scheduling
- Floorplanning

- Many real-world problems involve real-valued variables…

Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let’s start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

Search Methods

- What does BFS do?
- What does DFS do?
 - [ANIMATION]
- What’s the obvious problem here?
- What’s the slightly-less-obvious problem?

Backtracking Search

- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative
 - i.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?

- Idea 2: Only allow legal assignments at each point
 - i.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok

- Depth-first search for CSPs with these two improvements is called backtracking search
 - [ANIMATION]

- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for n \approx 25

Backtracking Example

function BACKTRACKING-SEARCH(cp) returns solution, failure
 return RECURSIVE-BACKTRACKING([], cp)

function RECURSIVE-BACKTRACKING(assignment, cp) returns solution, failure
 if assignment is complete then return assignment
 else
 for each value in ORDER-DOMAIN-VALUES(assignment cp) do
 if value is consistent with assignment then
 new-assignment = assignment with value assigned
 result = RECURSIVE-BACKTRACKING(new-assignment, cp)
 if result is solution then return new-assignment
 end if
 end for
 end if
 return failure

- What are the choice points?
Improving Backtracking

- General purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?

Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

 Why min rather than max?
 - Called most constrained variable
 - "Fail fast" ordering

Degree Heuristic

- Tie breaker among MRV variables
- Degree heuristic:
 - Choose the variable with the most constraints on remaining variables

 Why most rather than fewest constraints?

Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

 Why least rather than most?
 - Combining these heuristics makes 1000 queens feasible

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables
- Idea: Terminate when any variable has no legal values

Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

 - NT and SA cannot both be blue!
 - Why didn't we detect this yet?
 - Constraint propagation repeatedly enforces constraints (locally)
Arc Consistency

- Simplest form of propagation makes each arc consistent
 - \(X \rightarrow Y \) is consistent iff for every value \(x \) there is some allowed \(y \)

- If \(X \) loses a value, neighbors of \(X \) need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What’s the downside of arc consistency?
- Can be run as a preprocessor or after each assignment

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has \(c \) variables out of \(n \) total
- Worst-case solution cost is \(O((n/c)(d^c)) \), linear in \(n \)
 - E.g., \(n = 80, d = 2, c = 20 \)
 - \(2^{20} = 4 \text{ billion years at 10 million nodes/sec} \)
 - \((4)(2^{20}) = 0.4 \text{ seconds at 10 million nodes/sec} \)

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering
- For \(i = n : 2 \), apply RemoveInconsistent(Parent(\(X_i \)), \(X_i \))
- For \(i = 1 : n \), assign \(X_i \) consistently with Parent(\(X_i \))
- Runtime: \(O(n d^2) \)

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in \(O(n d^2) \) time (next slide)
 - Compare to general CSPs, where worst-case time is \(O(d^n) \)
 - This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size \(c \) gives runtime \(O(\left(d^c\right)(n-c) d^{2c}) \), very fast for small \(c \)
Iterative Algorithms for CSPs

- Greedy and local methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - i.e., hill climb with \(h(n) = \) total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns \((4^4 = 256 \text{ states})\)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \) number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[
R = \frac{\text{number of constraints}}{\text{number of variables}}
\]

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can’t make it better
- Generally much more efficient (but incomplete)

Types of Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations
- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - Iterative improvement algorithms
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
- What's good about it?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to "temperature"
local variables: current, a node
next, a node
T, a "temperature" controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
  T ← schedule[t]
  if T = 0 then return current
  next ← a randomly selected successor of current
  ΔE ← VALUE[next] − VALUE[current]
  if ΔE > 0 then current ← next
  else current ← next only with probability exp(ΔE/T)
```

- Theoretical guarantee:
 - Stationary distribution: \(p(x) \propto \frac{e^{E(x)}}{Z} \)
 - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
 - Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Beam Search

- Like greedy search, but keep K states at all times:

```
Greedy Search

Beam Search
```

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- Why do we still need optimal methods?

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
 - Like beam search (selection), but also have pairwise crossover operators, with optional mutation
 - Probably the most misunderstood, misapplied (and even maligned) technique around!
Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?

Continuous Problems

- Placing airports in Romania
 - States: \((x_1, y_1, x_2, y_2, x_3, y_3)\)
 - Cost: sum of squared distances to closest city

Gradient Methods

- How to deal with continuous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
 - E.g. force integral coordinates
- Continuous optimization
 - E.g. gradient ascent
 \[
 \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3} \right)
 \]
 \[
 x \leftarrow x + \alpha \nabla f(x)
 \]