Today

- More CSPs
 - Applications
 - Tree Algorithms
 - Cutset Conditioning

- Local Search
Reminder: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a subset of the possible tuples)

- Unary Constraints
- Binary Constraints
- N-ary Constraints

Example: Boolean Satisfiability

- Given a Boolean expression, is it satisfiable?
- Very basic problem in computer science
 \[p_1 \land (p_2 \rightarrow p_3) \land ((\neg p_1 \land \neg p_3) \rightarrow \neg p_2) \land (p_1 \lor p_3) \]
- Turns out you can always express in 3-CNF
 \[(p_1) \land (\neg p_2 \lor p_3) \land (p_1 \lor p_3 \lor \neg p_2) \land (p_1 \lor p_2 \lor p_3) \]
- 3-SAT: find a satisfying truth assignment
Example: 3-SAT

- **Variables:** p_1, p_2, \ldots, p_n
- **Domains:** {true, false}
- **Constraints:**
 \[
 \begin{align*}
 &p_i \lor p_j \lor p_k \\
 &\neg p_i' \lor p_j' \lor p_k' \\
 \vdots \\
 &p_i'' \lor \neg p_j'' \lor \neg p_k''
 \end{align*}
 \]
 Implicitly conjoined (all clauses must be satisfied)

CSPs: Queries

- **Types of queries:**
 - Legal assignment (last class)
 - All assignments
 - Possible values of some query variable(s) given some evidence (partial assignments)
Example: N-Queens

- **Formulation 3:**
 - **Variables:** Q_k
 - **Domains:** $\{1, 2, 3, \ldots N\}$
 - **Constraints:**
 \[\forall i, j \ (i; Q_i, j; Q_j) \in \{(1; 1, 2; 3), (1, 1, 2; 4), \ldots\} \]
 \[\forall i, j \; \text{non-threatening}(i; Q_i, j; Q_j) \]

Reminder: Consistency

- **Basic solution:** DFS / backtracking
 - Add a new assignment
 - Check for violations
- **Forward checking:**
 - Pre-filter unassigned domains after every assignment
 - Only remove values which immediately conflict with current assignments
- **Arc consistency**
 - We only defined it for binary CSPs
 - Check for impossible values on all pairs of variables, prune them
 - Run after each assignment, but before recursing
 - A pre-filter, not search!
Arc Consistency

function AC-3 (csp) **returns** the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
 \((X_i, X_j) \leftarrow \text{Remove-First}(queue)\)
 if \text{Remove-Inconsistent-Values}(X_i, X_j) then
 for each \(X_k\) in \text{Neighbors}[X_i] do
 add \((X_k, X_i)\) to queue

function Remove-Inconsistent-Values (X_i, X_j) **returns** true iff succeeds
removed \(\leftarrow\) false
for each \(x\) in Domain[X_i] do
 if no value \(y\) in Domain[X_j] allows \((x,y)\) to satisfy the constraint \(X_i \leftrightarrow X_j\) then delete \(x\) from Domain[X_i]; removed \(\leftarrow\) true
return removed

- [DEMO]

Limitations of Arc Consistency

- **After running arc consistency:**
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

What went wrong here?

What went wrong here?
K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute
- (You need to know the k=2 algorithm)

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, … 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - …
- Lots of middle ground between arc consistency and n-consistency! (e.g. path consistency)
Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
 - Worst-case solution cost is $O\left(\frac{n}{c}\right)(d^c)$, linear in n
 - E.g., $n = 80$, $d = 2$, $c = 20$
 - $2^{80} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n \cdot d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.
Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering.

- For $i = n : 2$, apply \(\text{RemoveInconsistent}(\text{Parent}(X_i), X_i) \)
- For $i = 1 : n$, assign X_i consistently with $\text{Parent}(X_i)$
- Runtime: $O(n d^2)$ (why?)

Why does this work?
- Claim: After each node is processed leftward, all nodes to the right can be assigned in any way consistent with their parent.
- Proof: Induction on position

Why doesn’t this algorithm work with loops?
- Note: we’ll see this basic idea again with Bayes’ nets (and call it message passing)
Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^c)(n-c)d^2)$, very fast for small c

Types of Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations

- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - Iterative improvement algorithms
Iterative Algorithms for CSPs

- Hill-climbing, simulated annealing typically work with “complete” states, i.e., all variables assigned.

- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators \textit{reassign} variable values

- Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hillclimb with \(h(n) = \) total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (\(4^4 = 256\) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \) number of attacks
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]

CSP Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice
Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can’t make it better
- Generally much more efficient (but incomplete)

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
- What’s good about it?
Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
 schedule, a mapping from time to “temperature”
local variables: current, a node
 next, a node
 T, a “temperature” controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for i ← 1 to ∞ do
 T ← schedule[i]
 if T = 0 then return current
 next ← a randomly selected successor of current
 ΔE ← VALUE[next] − VALUE[current]
 if ΔE > 0 then current ← next
 else current ← next only with probability e^{ΔE/T}

- Random restarts?
- Random sideways steps?
Simulated Annealing

- **Theoretical guarantee:**
 - Stationary distribution: \(p(x) \propto e^{\frac{E(x)}{kT}} \)
 - If \(T \) decreased slowly enough, will converge to optimal state!

- **Is this an interesting guarantee?**

- **Sounds like magic, but reality is reality:**
 - The more downhill steps you need to escape, the less likely you are to ever make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways

Beam Search

- **Like greedy hillclimbing search, but keep \(K \) states at all times:**

 ![Greedy Search](image1) ![Beam Search](image2)

- **Variables:** beam size, encourage diversity?
- **The best choice in MANY practical settings**
- **Complete? Optimal?**
- **Why do we still need optimal methods?**
Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation
- Probably the most misunderstood, misapplied (and even maligned) technique around!

Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?
Continuous Problems

- Placing airports in Romania
 - States: \((x_1,y_1,x_2,y_2,x_3,y_3)\)
 - Cost: sum of squared distances to closest city

Gradient Methods

- How to deal with continuous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
 - E.g. force integral coordinates
- Continuous optimization
 - E.g. gradient ascent
 \[
 \nabla f = \begin{pmatrix}
 \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial y_1} & \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial y_2} & \frac{\partial f}{\partial x_3} & \frac{\partial f}{\partial y_3}
\end{pmatrix}
\]
 \[
 x \leftarrow x + \alpha \nabla f(x)
\]