Today

- More CSPs
- Applications
- Tree Algorithms
- Cutset Conditioning
- Local Search

Reminder: CSPs

- Variables
- Domains
- Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a subset of the possible tuples)
- Unary Constraints
- Binary Constraints
- N-ary Constraints

Example: Boolean Satisfiability

- Given a Boolean expression, is it satisfiable?
- Very basic problem in computer science
 \[p_1 \wedge (p_2 \rightarrow p_3) \wedge ((\neg p_1 \wedge \neg p_3) \rightarrow \neg p_2) \wedge (p_1 \vee p_3) \]
- Turns out you can always express in \(3\text{-CNF} \)

 \[(p_1 \wedge \neg p_2 \wedge p_3) \wedge (p_1 \vee p_3 \vee \neg p_2) \wedge (p_1 \vee p_2 \vee p_3) \]
- \(3\text{-SAT} \): find a satisfying truth assignment

Example: 3-SAT

- Variables: \(p_1, p_2, \ldots, p_n \)
- Domains: \{true, false\}
- Constraints: \[p_i \lor p_j \lor p_k \]
 \[\neg p_i \lor p_j \lor p_k \]
 ...
 \[p_i'' \lor \neg p_j'' \lor \neg p_k'' \]
 \[\text{implicitly conjoined (all clauses must be satisfied)} \]

CSPs: Queries

- Types of queries:
 - Legal assignment (last class)
 - All assignments
 - Possible values of some query variable(s) given some evidence (partial assignments)
Example: N-Queens

- **Formulation 3:**
 - **Variables:** Q_k
 - **Domains:** $\{1, 2, 3, \ldots, N\}$
 - **Constraints:**
 \[\forall i, j \quad (i; Q_i; j; Q_j) \in \{(1; 1, 2, 3), (1, 1, 2, 4), \ldots\} \]
 \[\forall i, j \text{ non-threatening}(i; Q_i; j; Q_j), \]

Reminder: Consistency

- **Basic solution:** DFS / backtracking
 - Add a new assignment
 - Check for violations
- **Forward checking:**
 - Pre-filter unassigned domains after every assignment
 - Only remove values which immediately conflict with current assignments
- **Arc consistency**
 - We only defined it for binary CSPs
 - Check for impossible values on all pairs of variables, prune them
 - Run after each assignment, but before recursing
 - A pre-filter, not search!

Arc Consistency

```python
def arc_consistency(csp):
    queue = []
    for node in csp:
        queue.append(node)
        while queue is not empty:
            current = queue.pop()
            if remove_inconsistent_values(current):
                for neighbor in current.neighbor:
                    add_to_queue(neighbor)

def remove_inconsistent_values(node):
    removed = False
    for value in node.domain:
        if value is not consistent with all neighbors:
            node.domain.remove(value)
            removed = True
    return removed
```

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - Lots of middle ground between arc consistency and n-consistency! (e.g. path consistency)
Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has \(c \) variables out of \(n \) total
 - Worst-case solution cost is \(O(\frac{n(c)(d^c)}{c}) \), linear in \(n \)
 - E.g., \(n = 80, d = 2, c = 20 \)
 - \(2^{16} = 4 \) billion years at 10 million nodes/sec
 - \((4)(2^{20}) = 0.4 \) seconds at 10 million nodes/sec

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering
- For \(i = n : 2 \), apply RemoveInconsistent(Parent(\(X_i \)), \(X_i \))
- For \(i = 1 : n \), assign \(X_i \) consistently with Parent(\(X_i \))
- Runtime: \(O(n d^2) \) (why?)

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size \(c \) gives runtime \(O((d^c)(n-c) d^c) \), very fast for small \(c \)

Types of Problems

- **Planning problems:**
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations
- **Identification problems:**
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - Iterative improvement algorithms
Iterative Algorithms for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned.
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hillclimb with \(h(n) = \) total number of violated constraints

Performance of Min-Conflicts

- Given random initial state, can solve \(n \)-queens in almost constant time for arbitrary \(n \) with high probability (e.g., \(n = 10,000,000 \))
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[
R = \frac{\text{number of constraints}}{\text{number of variables}}
\]

Example: 4-Queens

- States: 4 queens in 4 columns (\(4^4 = 256 \) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \) number of attacks

CSP Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can’t make it better
- Generally much more efficient (but incomplete)

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
- What’s good about it?
Hill Climbing Diagram

- Random restarts?
- Random sideways steps?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

  ```
  function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
          schedule, a mapping from time to temperature
  local variables: current, a node
                  next, a node
                  T, a "temperature" controlling prob. of downward steps
  current ← MAKE-NODE(INITIAL-STATE(problem))
  for t from 1 to ∞
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE = VALUE(next) - VALUE(current)
    if ΔE > 0 then current ← next
    else current ← next only with probability e^{-ΔE/T}
  ```

- Theoretical guarantee:
 - Stationary distribution: \(p(x) \propto e^{-E(x)/T} \)
 - If \(T \) decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?
 - Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to ever make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Simulated Annealing

- Beam Search

 - Like greedy hillclimbing search, but keep \(K \) states at all times:

    ```
    Greedy Search                  Beam Search
    Variables: beam size, encourage diversity?
    The best choice in MANY practical settings
    Complete? Optimal?
    Why do we still need optimal methods?
    ```

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation
- Probably the most misunderstood, misapplied (and even maligned) technique around!

Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?
Continuous Problems

- Placing airports in Romania
 - States: \((x_1, y_1, x_2, y_2, x_3, y_3)\)
 - Cost: sum of squared distances to closest city

Gradient Methods

- How to deal with continuous (therefore infinite) state spaces?
 - Discretization: bucket ranges of values
 - E.g. force integral coordinates
 - Continuous optimization
 - E.g. gradient ascent
 \[
 \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial x_4}, \frac{\partial f}{\partial x_5}, \frac{\partial f}{\partial x_6} \right)
 \]
 \[
 x \leftarrow x + \alpha \nabla f(x)
 \]