Announcements

- Written 1 has been up (Search and CSPs)
- Project 2 will be up soon (Multi-Agent Pacman)
- Other announcements:
 - None yet
Today

- Finish up Search and CSPs
- Start on Adversarial Search

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$
- This property also applies to probabilistic reasoning (later): an important example of the relation between syntactic restrictions and the complexity of reasoning.
Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering.
- For $i = n : 2$, apply $\text{RemoveInconsistent}(\text{Parent}(X_i), X_i)$
- For $i = 1 : n$, assign X_i consistently with $\text{Parent}(X_i)$
- Runtime: $O(n d^2)$ (why?)

Why does this work?
- Claim: After each node is processed leftward, all nodes to the right can be assigned in any way consistent with their parent.
- Proof: Induction on position

Why doesn’t this algorithm work with loops?
- Note: we’ll see this basic idea again with Bayes’ nets
Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^c)(n-c)d^2)$, very fast for small c

Tree Decompositions*

- Create a tree-structured graph of overlapping subproblems, each is a mega-variable
- Solve each subproblem to enforce local constraints
- Solve the CSP over subproblem mega-variables using our efficient tree-structured CSP algorithm

Agree:

- $(M1, M2) \in \{((WA=g, SA=g, NT=g), (NT=g, SA=g, Q=g)), \ldots\}$
Iterative Algorithms for CSPs

- Local search methods: typically work with “complete” states, i.e., all variables assigned

- To apply to CSPs:
 - Start with some assignment with unsatisfied constraints
 - Operators *reassign* variable values
 - No fringe! Live on the edge.

- Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \text{total number of violated constraints} \)

Example: 4-Queens

- States: 4 queens in 4 columns (\(4^4 = 256 \) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(c(n) = \text{number of attacks} \)
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
- What’s good about it?
Hill Climbing Diagram

- Random restarts?
- Random sideways steps?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
- But make them rarer as time goes on

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to “temperature”
local variables: current, a node
                next, a node
                T, a “temperature” controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] - VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^ΔE/T
```
Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values

- Backtracking = depth-first search with incremental constraint checks
- Ordering: variable and value choice heuristics help significantly
- Filtering: forward checking, arc consistency prevent assignments that guarantee later failure
- Structure:Disconnected and tree-structured CSPs are efficient

- Iterative improvement: min-conflicts is usually effective in practice

Game Playing State-of-the-Art

- **Checkers:** Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions. Checkers is now solved!

- **Chess:** Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue examined 200 million positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply. Current programs are even better, if less historic.

- **Othello:** Human champions refuse to compete against computers, which are too good.

- **Go:** Human champions are beginning to be challenged by machines, though the best humans still beat the best machines. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves, along with aggressive pruning.

- **Pacman:** unknown
GamesCrafters

http://gamescrafters.berkeley.edu/

Adversarial Search

[DEMO: mystery pacman]
Game Playing

- Many different kinds of games!

- Axes:
 - Deterministic or stochastic?
 - One, two, or more players?
 - Perfect information (can you see the state)?

- Want algorithms for calculating a **strategy** (policy) which recommends a move in each state

Deterministic Games

- Many possible formalizations, one is:
 - States: \(S \) (start at \(s_0 \))
 - Players: \(P=\{1...N\} \) (usually take turns)
 - Actions: \(A \) (may depend on player / state)
 - Transition Function: \(SxA \to S \)
 - Terminal Test: \(S \to \{t,f\} \)
 - Terminal Utilities: \(SxP \to R \)

- Solution for a player is a policy: \(S \to A \)
Deterministic Single-Player?

- Deterministic, single player, perfect information:
 - Know the rules
 - Know what actions do
 - Know when you win
 - E.g. Freecell, 8-Puzzle, Rubik’s cube
- … it’s just search!
- Slight reinterpretation:
 - Each node stores a value: the best outcome it can reach
 - This is the maximal outcome of its children (the max value)
 - Note that we don’t have path sums as before (utilities at end)
 - After search, can pick move that leads to best node

Deterministic Two-Player

- E.g. tic-tac-toe, chess, checkers
- Zero-sum games
 - One player maximizes result
 - The other minimizes result
- Minimax search
 - A state-space search tree
 - Players alternate
 - Each layer, or ply, consists of a round of moves*
 - Choose move to position with highest minimax value = best achievable utility against best play

* Slightly different from the book definition
Tic-tac-toe Game Tree

Minimax Example
Minimax Search

function **Max-Value**(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 v ← −∞
 for a, s in Successors(state) do v ← Max(v, Min-Value(s))
 return v

function **Min-Value**(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 v ← ∞
 for a, s in Successors(state) do v ← Min(v, Max-Value(s))
 return v

Minimax Properties

- Optimal against a perfect player. Otherwise?

- Time complexity?
 - O(b^m)

- Space complexity?
 - O(bm)

- For chess, b ≈ 35, m ≈ 100
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?
Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with an eval function for non-terminal positions
- Guarantee of optimal play is gone
- More plies makes a BIG difference
 - [DEMO: limitedDepth]
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes/sec
 - So can check 1M nodes per move
 - α-β reaches about depth 8 – decent chess program

Evaluation Functions

- Function which scores non-terminals
- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:

$$\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

- e.g. $f_i(s) = (\text{num white queens} - \text{num black queens})$, etc.
Evaluation for Pacman

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

Why Pacman Starves

- He knows his score will go up by eating the dot now
- He knows his score will go up just as much by eating the dot later on
- There are no point-scoring opportunities after eating the dot
- Therefore, waiting seems just as good as eating