Recap: MDPs

- Markov decision processes:
 - States \(S \)
 - Actions \(A \)
 - Transitions \(P(s'|s,a) \) (or \(T(s,a,s') \))
 - Rewards \(R(s,a,s') \) (and discount \(\gamma \))
 - Start state \(s_0 \)

- Quantities:
 - Policy = map of states to actions
 - Episode = one run of an MDP
 - Utility = sum of discounted rewards
 - Values = expected future utility from a state
 - Q-Values = expected future utility from a q-state

Recap: Optimal Utilities

- The utility of a state \(s \):
 \(V^*(s) = \) expected utility starting in \(s \) and acting optimally

- The utility of a q-state \((s,a)\):
 \(Q^*(s,a) = \) expected utility starting in \(s \), taking action \(a \) and thereafter acting optimally

- The optimal policy:
 \(\pi^*(s) = \) optimal action from state \(s \)

Recap: Bellman Equations

- Definition of utility leads to a simple one-step lookahead relationship amongst optimal utility values:
 - Total optimal rewards = maximize over choice of (first action plus optimal future)

 Formally:
 \[
 V^*(s) = \max_a Q^*(s,a) \\
 Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right] \\
 V^* = \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right]
 \]

Value Estimates

- Calculate estimates \(V_k^*(s) \)
 - Not the optimal value of \(s \)
 - The optimal value considering only next \(k \) time steps (\(k \) rewards)
 - As \(k \to \infty \), it approaches the optimal value

- Almost solution: recursion (i.e. expectimax)
- Correct solution: dynamic programming

Value Iteration

- Idea:
 - Start with \(V_0(s) = 0 \), which we know is right (why?)
 - Given \(V'_i \), calculate the values for all states for depth \(i+1 \):

 \[
 V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_i(s') \right]
 \]

 - Throw out old vector \(V_i \)
 - Repeat until convergence
 - This is called a value update or Bellman update

- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
Example: Bellman Updates

\[V_{t+1}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_t(s')] \]

\[V_2((3,3)) = \sum_{a'} T((3,3), \text{right}, s') [R((3,3)) + 0.9 V_1(s')] \]

max happens for 2:0.8 + 1:0.1 + 0.1:0

Convergence

- Define the max-norm: \(\| U \| = \max_{s} \| U(s) \| \)
- Theorem: For any two approximations \(U \) and \(V \)
 \[\| U^{t+1} - V^{t+1} \| \leq \gamma \| U^t - V^t \| \]
 - i.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true \(U \) and value iteration converges to a unique, stable, optimal solution
- Theorem:
 \[\| U^{t+1} - U^t \| < \epsilon \Rightarrow \| U^{t+1} - U^t \| < 2\epsilon/(1 - \gamma) \]
 - i.e. once the change in our approximation is small, it must also be close to correct

Practice: Computing Actions

- Which action should we chose from state \(s \):
 - Given optimal values \(V \):
 \[\arg \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')] \]
 - Given optimal q-values \(Q \):
 \[\arg \max_{a} Q^*(s, a) \]
- Lesson: actions are easier to select from Q's!

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state \(s \) under a fixed (generally non-optimal) policy
- Define the utility of a state \(s \), under a fixed policy \(\pi \):
 \[V^\pi(s) = \text{expected total discounted rewards (return) starting in } s \text{ and following } \pi \]
- Recursive relation (one-step look-ahead / Bellman equation):
 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')] \]

Policy Evaluation

- How do we calculate the V's for a fixed policy?
 - Idea one: turn recursive equations into updates
 \[V_0^\pi(s) = 0 \]
 \[V_{t+1}^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_t^\pi(s')] \]
 - Idea two: it’s just a linear system, solve with Matlab (or whatever)
Policy Iteration

- **Alternative approach:**
 - **Step 1:** Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence.
 - **Step 2:** Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values.
 - Repeat steps until policy converges.

- **This is policy iteration**
 - It's still optimal!
 - Can converge faster under some conditions.

Value Iteration

- **Policy evaluation:** with fixed current policy \(\pi \), find values with simplified Bellman updates:
 - Iterate until values converge

 \[V^{\pi_k}_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{\pi_k}_k(s') \right] \]

- **Policy improvement:** with fixed utilities, find the best action according to one-step look-ahead

 \[\pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{\pi_k}_k(s') \right] \]

Comparison

- Both compute same thing (optimal values for all states).
- In value iteration:
 - Every pass (or “backup”) updates both utilities (explicitly, based on current utilities) and policy (implicitly, based on current utilities).
 - Tracking the policy isn’t necessary; we take the max

 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_k(s') \right] \]

- In policy iteration:
 - Several passes to update utilities with fixed policy
 - After policy is evaluated, a new policy is chosen
 - Both are dynamic programs for solving MDPs.

Asynchronous Value Iteration

- In value iteration, we update every state in each iteration.
- Actually, *any* sequences of Bellman updates will converge if every state is visited infinitely often.
- In fact, we can update the policy as seldom or often as we like, and we will still converge.
- Idea: Update states whose value we expect to change.
 - If \(|P_{\pi_k}(s) - \pi_k(s)| \) is large then update predecessors of \(s \).

Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(\mathcal{A} \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
 - Still looking for a policy \(\pi(s) \)
 - New twist: don’t know \(T \) or \(R \)
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology.
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated.

- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies.
 - Bees have a direct neural connection from nectar intake measurement to motor planning area.
Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to \(V(s) \) using a neural network
- Combined with depth 3 search, one of the top 3 players in the world
- You could imagine training Pacman this way...
- ... but it's tricky! (It's also P3)

Example: Direct Estimation

- Episodes:
 - (1,1) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (2,3) right -1
 - (3,2) up -1
 - (3,3) right -1
- \(V(1,1) \approx (99 + 97 - 102) / 3 = 31.3 \)
- \(V(3,3) \approx (92 + 98 - 96) / 2 = 97 \)
- \(\gamma = 1, R = -1 \)

Example: Model-Based Learning

- Episodes:
 - (1,1) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (2,3) right -1
 - (3,2) up -1
 - (3,3) right -1
- \(T(3,3, \text{right}, <3,3>) = 1 / 3 \)
- \(T(2,3, \text{right}, <3,3>) = 2 / 2 \)

Passive Learning

- Simplified task
 - You don't know the transitions \(T(s,a,s') \)
 - You don't know the rewards \(R(s,a,s') \)
 - You are given a policy \(\pi(s) \)
 - Goal: learn the state values
 - ... what policy evaluation did
- In this case:
 - Learner "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We'll get to the active case soon
 - This is NOT offline planning! You actually take actions in the world and see what happens...

Model-Based Learning

- Idea:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct

- Simple empirical model learning
 - Count outcomes for each \(s,a \)
 - Normalize to give estimate of \(T(s,a,s') \)
 - Discover \(R(s,a,s') \) when we experience \((s,a,s') \)

- Solving the MDP with the learned model
 - Iterative policy evaluation, for example
 \[
 V_{t+1}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_t(s')]
 \]