Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
 - Still looking for a policy \(\pi(s) \)

 - New twist: don’t know \(T \) or \(R \)
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

Passive Learning

- Simplified task
 - You don’t know the transitions \(T(s,a,s') \)
 - You don’t know the rewards \(R(s,a,s') \)
 - You are given a policy \(\pi(s) \)
 - Goal: learn the state values
 - ... what policy evaluation did

 In this case:
 - Learner “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the active case soon
 - This is NOT offline planning! You actually take actions in the world and see what happens…

Example: Direct Evaluation

- Episodes:
 - \((1,1) \) up -1
 - \((1,2) \) up -1
 - \((1,3) \) right -1
 - \((2,3) \) right -1
 - \((3,3) \) right -1
 - \((3,2) \) up -1
 - \((3,1) \) right -1
 - \((4,3) \) exit +100

\[\gamma = 1, R = -1 \]
\[V(2,3) = (96 + -103) / 2 = -3.5 \]
\[V(3,3) = (99 + 97 + -102) / 3 = 31.3 \]

Recap: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate \(V \) for a fixed policy:
 - New \(V \) is expected one-step look-ahead using current \(V \)
 - Unfortunately, need \(T \) and \(R \)

\[V_0^\pi(s) = 0 \]
\[V_{i+1}^\pi(s) \leftarrow \sum_{a'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]

Model-Based Learning

- Idea:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct

- Simple empirical model learning
 - Count outcomes for each \(s,a \)
 - Normalize to give estimate of \(T(s,a,s') \)
 - Discover \(R(s,a,s') \) when we experience \((s,a,s') \)

- Solving the MDP with the learned model
 - Iterative policy evaluation, for example

\[V_{i+1}^\pi(s) \leftarrow \sum_{a'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]
Sample-Based Policy Evaluation?

$V_{n+1}^\pi(s) = \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_n^\pi(s') \right]$

- Who needs T and R? Approximate the expectation with samples (drawn from T)

 - $sample_1 = R(s, \pi(s), s_1') + \gamma V_n^\pi(s_1')$
 - $sample_2 = R(s, \pi(s), s_2') + \gamma V_n^\pi(s_2')$
 - \ldots
 - $sample_k = R(s, \pi(s), s_k') + \gamma V_n^\pi(s_k')$

$V_{n+1}^\pi(s) = \frac{1}{k} \sum_{i=1}^{k} sample_i$

Almost! But we only actually make progress when we move to $n+1$.

Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience (s, a, s', r)
 - Likely s' will contribute updates more often

- Temporal difference learning
 - Policy still fixed
 - Move value toward value of whatever successor occurs: running average!

Sample of $V(s)$: $sample = R(s, \pi(s), s') + \gamma V(s')$

Update to $V(s)$:

$V(s) \leftarrow V(s) - (1 - \alpha) V(s) + \alpha \cdot sample$

Same update:

$V(s) \leftarrow V(s) - V(s) + \alpha \cdot sample$

Exponential Moving Average

- Exponential moving average
 - Makes recent samples more important

 $E_n = \sum_{m=0}^{\infty} (1 - \alpha)^m \cdot s_{m-1} + (1 - \alpha)^2 \cdot s_{m-2} + \ldots$

 - $1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots$

- Forgets about the past (distant past values were wrong anyway)
- Easy to compute from the running average

 $E_n = (1 - \alpha)^n \cdot E_0 + \alpha \cdot s_n$

- Decreasing learning rate can give converging averages
Problems with TD Value Learning

- TD value learning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we're sunk:
 \[
 \pi(s) = \arg \max_a Q^*(s,a)
 \]
 \[
 Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right]
 \]
- Idea: learn Q-values directly
- Makes action selection model-free too!

Active Learning

- Full reinforcement learning
 - You don't know the transitions \(T(s,a,s') \)
 - You don't know the rewards \(R(s,a,s') \)
 - You can choose any actions you like
 - Goal: learn the optimal policy
 - … but value iteration did!
- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with \(V_0(s) = 0 \), which we know is right (why?)
 - Given \(V_i \), calculate the values for all states for depth \(i+1 \):
 \[
 V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_i(s') \right]
 \]
- But Q-values are more useful!
 - Start with \(Q_0(s,a) = 0 \), which we know is right (why?)
 - Given \(Q_i \), calculate the q-values for all q-states for depth \(i+1 \):
 \[
 Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_i(s',a') \right]
 \]

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - … but don’t decrease it too quickly!
 - Basically doesn’t matter how you select actions (!)
- Neat property: off-policy learning
 - learn optimal policy without following it (some caveats)

Q-Learning

- Q-Learning: sample-based Q-value iteration
- Learn \(Q^*(s,a) \) values
 - Receive a sample \((s,a,s',r) \)
 - Consider your old estimate: \(Q(s,a) \)
 - Consider your new sample estimate:
 \[
 Q'(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right]
 \]
 - Incorporate the new estimate into a running average:
 \[
 Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha [\text{sample}]
 \]

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (\(\varepsilon \)-greedy)
 - Every time step, flip a coin
 - With probability \(\varepsilon \), act randomly
 - With probability 1-\(\varepsilon \), act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower \(\varepsilon \) over time
 - Another solution: exploration functions
Exploration Functions

- **When to explore**
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

- **Exploration function**
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$ (exact form not important)

$$Q_{t+1}(s, a) = R(s, a, s') + \gamma \max_{a'} Q_t(s', a')$$

$$Q_{t+1}(s, a) = R(s, a, s') + \gamma \max_{a'} f(Q_t(s', a'), N(s', a'))$$

Q-Learning

- Q-learning produces tables of q-values: