Value of Information
Decision Networks

- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
- New node types:
 - Chance nodes (just like BNs)
 - Actions (rectangles, cannot have parents, act as observed evidence)
 - Utility node (diamond, depends on action and chance nodes)

[DEMO: Ghostbusters]

Decision Networks

- Action selection:
 - Instantiate all evidence
 - Set action node(s) each possible way
 - Calculate posterior for all parents of utility node, given the evidence
 - Calculate expected utility for each action
 - Choose maximizing action
Example: Decision Networks

Umbrella = leave

\[\text{EU(leave)} = \sum_w P(w)U(\text{leave}, w) \]
\[= 0.7 \cdot 100 + 0.3 \cdot 0 = 70 \]

Umbrella = take

\[\text{EU(take)} = \sum_w P(w)U(\text{take}, w) \]
\[= 0.7 \cdot 20 + 0.3 \cdot 70 = 35 \]

Optimal decision = leave

\[\text{MEU}(a) = \max_a EU(a) = 70 \]

Decisions as Outcome Trees

- Almost exactly like expectimax / MDPs
- What’s changed?
Evidence in Decision Networks

Find $P(W|F=\text{bad})$
- Select for evidence
 - First we join $P(W)$ and $P(\text{bad}|W)$
 - Then we normalize

<table>
<thead>
<tr>
<th>Weather</th>
<th>$P(W)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.7</td>
</tr>
<tr>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

| Forecast | $P(F|W)$ |
|----------|----------|
| sun | 0.8 |
| rain | 0.2 |

<table>
<thead>
<tr>
<th>Weather</th>
<th>$P(W,F=\text{bad})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.14</td>
</tr>
<tr>
<td>rain</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forecast</th>
<th>$P(W,F=\text{bad})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.34</td>
</tr>
<tr>
<td>rain</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Example: Decision Networks

Umbrella = leave

\[
\text{EU(leave|bad)} = \sum_w P(w|\text{bad})U(\text{leave}, w)
\]

\[
= 0.34 \cdot 100 + 0.66 \cdot 0 = 34
\]

Umbrella = take

\[
\text{EU(take|bad)} = \sum_w P(w|\text{bad})U(\text{take}, w)
\]

\[
= 0.34 \cdot 20 + 0.66 \cdot 70 = 53
\]

Optimal decision = take

\[
\text{MEU}(F = \text{bad}) = \max_a \text{EU}(a|\text{bad}) = 53
\]
Decisions as Outcome Trees

Value of Information

- **Idea:** compute value of acquiring evidence
 - Can be done directly from decision network

- **Example:** buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2

- **Question:** what's the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say "oil in a" or "oil in b," prob 0.5 each
 - If we know OilLoc, MEU is k (either way)
 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k/2
 - Fair price of information: k/2
Value of Information

- Assume we have evidence $E=e$. Value if we act now:
 $$\text{MEU}(e) = \max_a \sum_s P(s|e) \, U(s, a)$$

- Assume we see that $E' = e'$. Value if we act then:
 $$\text{MEU}(e, e') = \max_a \sum_s P(s|e, e') \, U(s, a)$$

- BUT E' is a random variable whose value is unknown, so we don’t know what e' will be

- Expected value if E' is revealed and then we act:
 $$\text{MEU}(e, E') = \sum_{e'} P(e'|e) \text{MEU}(e, e')$$

- Value of information: how much MEU goes up by revealing E' first then acting, over acting now:
 $$\text{VPI}(E'|e) = \text{MEU}(e, E') - \text{MEU}(e)$$

VPI Example: Weather

MEU with no evidence

$$\text{MEU}(s) = \max_a \text{EU}(a) = 70$$

MEU if forecast is bad

$$\text{MEU}(F = \text{bad}) = \max_a \text{EU}(a|\text{bad}) = 53$$

MEU if forecast is good

$$\text{MEU}(F = \text{good}) = \max_a \text{EU}(a|\text{good}) = 95$$

Forecast distribution

<table>
<thead>
<tr>
<th>F</th>
<th>$P(F)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>0.59</td>
</tr>
<tr>
<td>bad</td>
<td>0.41</td>
</tr>
</tbody>
</table>

$$\text{VPI}(E'|e') = \left(\sum_{e'} P(e'|e) \text{MEU}(e, e') \right) - \text{MEU}(e)$$
VPI Properties

- **Nonnegative**
 \[\forall E', e : \text{VPI}(E'|e) \geq 0 \]
- **Nonadditive** --- consider, e.g., obtaining \(E_j \) twice
 \[\text{VPI}(E_j, E_k|e) \neq \text{VPI}(E_j|e) + \text{VPI}(E_k|e) \]
- **Order-independent**
 \[
 \text{VPI}(E_j, E_k|e) = \text{VPI}(E_j|e) + \text{VPI}(E_k|e, E_j) \\
 = \text{VPI}(E_k|e) + \text{VPI}(E_j|e, E_k)
 \]

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn’t order either one. What’s the value of knowing which it is?

- There are two kinds of plastic forks at a picnic. It must be that one is slightly better. What’s the value of knowing which?

- You’re playing the lottery. The prize will be $0 or $100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?
POMDPs

- MDPs have:
 - States \(S \)
 - Actions \(A \)
 - Transition fn \(P(s'|s,a) \) (or \(T(s,a,s') \))
 - Rewards \(R(s,a,s') \)

- POMDPs add:
 - Observations \(O \)
 - Observation function \(P(o|s) \) (or \(O(s,o) \))

- POMDPs are MDPs over belief states \(b \) (distributions over \(S \))

- We’ll be able to say more in a few lectures

Example: Ghostbusters

- In (static) Ghostbusters:
 - Belief state determined by evidence to date \(\{e\} \)
 - Tree really over evidence sets
 - Probabilistic reasoning needed to predict new evidence given past evidence

- Solving POMDPs
 - One way: use truncated expectimax to compute approximate value of actions
 - What if you only considered busting or one sense followed by a bust?
 - You get a VPI-based agent!
More Generally

- General solutions map belief functions to actions
 - Can divide regions of belief space (set of belief functions) into policy regions (gets complex quickly)
 - Can build approximate policies using discretization methods
 - Can factor belief functions in various ways

- Overall, POMDPs are very (actually PSACE-) hard

- Most real problems are POMDPs, but we can rarely solve them in general!