Today

- A* Search
- Graph Search
- Heuristic Design
Recap: Search

- Search problem:
 - States (configurations of the world)
 - Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 - Start state and goal test

- Search tree:
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)

- Search Algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem

Bounds for Sorting by Prefix Reversal

William H. Gates
Microsoft, Albuquerque, New Mexico

Christos H. Papadimitriou*

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation \(\sigma \) of the integers from 1 to \(n \), let \(f(\sigma) \) be the smallest number of prefix reversals that will transform \(\sigma \) to the identity permutation, and let \(f(n) \) be the largest such \(f(\sigma) \) for all \(\sigma \) in (the symmetric group) \(S_n \). We show that \(f(n) \leq (5n + 5)/3 \), and that \(f(n) \geq 17n/16 \) for \(n \) a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function \(g(n) \) is shown to obey \(3n/2 - 1 \leq g(n) \leq 2n + 3 \).
Example: Pancake Problem

State space graph with costs as weights

General Tree Search

function TREE-SEARCH (problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Action: flip top two
Cost: 2

Path to reach goal:
Flip four, flip three
Total cost: 7
Uniform Cost Search

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every “direction”
 - No information about goal location

Example: Heuristic Function

Heuristic: the largest pancake that is still out of place
Best First (Greedy)

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - Best-first takes you straight to the (wrong) goal

- Worst-case: like a badly-guided DFS

Example: Heuristic Function

[Map diagram showing distances and heuristic function h(x)]
Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or *backward cost* $g(n)$
- **Best-first** orders by goal proximity, or *forward cost* $h(n)$

- **A* Search** orders by the sum: $f(n) = g(n) + h(n)$

Example: Teg Grenager

When should A* terminate?

- Should we stop when we enqueue a goal?

Example:

- No: only stop when we dequeue a goal
Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

- A heuristic h is **admissible** (optimistic) if:

 $h(n) \leq h^*(n)$

 where $h^*(n)$ is the true cost to a nearest goal

- Examples:

 - Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Optimality of A*: Blocking

Notation:
- \(g(n) = \) cost to node \(n \)
- \(h(n) = \) estimated cost from \(n \) to the nearest goal (heuristic)
- \(f(n) = g(n) + h(n) = \) estimated total cost via \(n \)
- \(G^* \): a lowest cost goal node
- \(G \): another goal node

Proof:
- What could go wrong?
- We’d have to have to pop a suboptimal goal \(G \) off the fringe before \(G^* \)
- This can’t happen:
 - Imagine a suboptimal goal \(G \) is on the queue
 - Some node \(n \) which is a subpath of \(G^* \) must also be on the fringe (why?)
 - \(n \) will be popped before \(G \)
Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

- Uniform-cost expanded in all directions

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[demo: contours UCS / A*]
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available
- Inadmissible heuristics are often useful too (why?)

Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?
8 Puzzle I

- Heuristic: Number of tiles misplaced
 - Why is it admissible?
 - $h(\text{start}) = 8$
 - This is a relaxed-problem heuristic

<table>
<thead>
<tr>
<th>Average nodes expanded when optimal path has length...</th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>112</td>
<td>6,300</td>
<td>3.6 x 10^6</td>
</tr>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why admissible?
- $h(\text{start}) = 3 + 1 + 2 + ...$
 - $= 18$

<table>
<thead>
<tr>
<th>Average nodes expanded when optimal path has length...</th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>
8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What’s wrong with it?

- With A*: a trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

- Dominance: \(h_a \geq h_c \) if
 \[\forall n : h_a(n) \geq h_c(n) \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[h(n) = \max(h_a(n), h_b(n)) \]

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic
Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

[demo: plan tiny UCS / A*]

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?
Graph Search

- In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

How to implement:
- Tree search + list of expanded states (“closed set”)
- Expand the search tree node-by-node, but…
- Before expanding a node, check to make sure its state is new

Important: store the closed set as a set, not a list

Can graph search wreck completeness? Why/why not?

How about optimality?
Optimality of A* Graph Search

Proof:
- New possible problem: some n on path to G^* isn’t in queue when we need it, because some worse n' for the same state dequeued and expanded first (disaster!)
- Take the highest such n in tree
- Let p be the ancestor of n that was on the queue when n' was popped
- Assume $f(p) < f(n)$
- $f(n) < f(n')$ because n' is suboptimal
- p would have been expanded before n'
- Contradiction!

Consistency

- Wait, how do we know parents have better f-values than their successors?
- Couldn’t we pop some node n, and find its child n' to have lower f value?
- YES:

- What can we require to prevent these inversions?
- Consistency: $c(n, a, n') \geq h(n) - h(n')$
 - Real cost must always exceed reduction in heuristic
 - Like admissibility, but better!
Optimality

- **Tree search:**
 - A* is optimal if heuristic is admissible (and non-negative)
 - UCS is a special case ($h = 0$)

- **Graph search:**
 - A* optimal if heuristic is consistent
 - UCS optimal ($h = 0$ is consistent)

- Consistency implies admissibility

- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

Summary: A*

- A* uses both backward costs and (estimates of) forward costs

- A* is optimal with admissible heuristics

- Heuristic design is key: often use relaxed problems
Mazeworld Demos