CS 188: Artificial Intelligence
Fall 2010

Lecture 4: Constraint Satisfaction
9/7/2010

Dan Klein – UC Berkeley
Multiple slides adapted from Stuart Russell or Andrew Moore

Announcements

- Project 1: Search is due Monday
 - Looking for partners? After class or newsgroup
- Written 1: Search and CSPs out soon
- Newsgroup: check it out

Today

- Search Conclusion
- Constraint Satisfaction Problems

A* Review

- A* uses both backward costs g and forward estimate h: $f(n) = g(n) + h(n)$
- A* tree search is optimal with admissible heuristics (optimistic future cost estimates)
- Heuristic design is key: relaxed problems can help

A* Graph Search Gone Wrong

State space graph

<table>
<thead>
<tr>
<th>State</th>
<th>G</th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Search tree

- $S \rightarrow A(1+4) \rightarrow B(1+1) \rightarrow C(2+1) \rightarrow G(5+0)$
- $A \rightarrow B \rightarrow C \rightarrow G$

Consistency

- Definition:
 - $\text{cost}(A \text{ to } C) + h(C) \geq h(A)$
- Consequences:
 - The f value along a path never decreases
 - Non-decreasing f means you're optimal to every state (not just goals)
 - A* graph search is optimal
What is Search For?

- Models of the world: single agents, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
 - Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors
 - $WA \neq NT$
 - $(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots\}$
- Solutions are assignments satisfying all constraints, e.g.:
 - $\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}$

Example: N-Queens

- **Formulation 1:**
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints:
 - $\forall i, j, k \ (X_{ij}, X_{jk}) \in \{(0, 0), (0, 1), (1, 0)\}$
 - $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$
 - $\forall i, j, k \ (X_{ij}, X_{j+k,j+k}) \subseteq \{(0, 0), (0, 1), (1, 0)\}$
 - $\sum_{i,j} X_{ij} = N$

- **Formulation 2:**
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \ldots N\}$
 - Constraints:
 - Implicit: $\forall i, j \ \text{non-threatening}(Q_i, Q_j)$
 - Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Example: Cryptarithmetic

- Variables (circles):
 \[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \]
- Domains:
 \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- Constraints (boxes):
 \[
 \text{alldiff}(F, T, U, W, R, O) \\
 O \mid O = R \mid 10 \cdot X_1 \\
 \ldots
 \]

Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 \{1, 2, \ldots, 9\}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP
- Look at all intersections
- Adjacent intersections impose constraints on each other

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size \(d\) means \(O(d^n)\) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable
- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods
 (see cs170 for a bit of this theory)

Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 \(SA \neq \text{green}\)
 - Binary constraints involve pairs of variables:
 \(SA \neq WA\)
 - Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
- … lots more!
- Many real-world problems involve real-valued variables…
Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let’s start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- Simplest CSP ever: two bits, constrained to be equal

Search Methods

- What would BFS do?
- What would DFS do?
- What problems does this approach have?

Backtracking Search

- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering
 - i.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?
 - Incremental goal test

- Idea 2: Only allow legal assignments at each point
 - i.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
 - “Incremental goal test”

- Depth-first search for CSPs with these two improvements is called backtracking search (useless name, really)
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for n = 25

Backtracking Example

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?
Minimum Remaining Values

- **Minimum remaining values (MRV):**
 - Choose the variable with the fewest legal values

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering

Least Constraining Value

- **Given a choice of variable:**
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible

Filtering: Forward Checking

- **Idea:** Keep track of remaining legal values for unassigned variables (using immediate constraints)
- **Idea:** Terminate when any variable has no legal values

Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn’t provide early detection for all failures:
- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- Constraint propagation propagates from constraint to constraint

Consistency of An Arc

- An arc \(X \rightarrow Y \) is consistent iff for every \(x \) in the tail there is some \(y \) in the head which could be assigned without violating a constraint

- Forward checking = Enforcing consistency of each arc pointing to the new assignment

Arc Consistency of a CSP

- A simple form of propagation makes sure all arcs are consistent:
 - If \(X \) loses a value, neighbors of \(X \) need to be rechecked!
 - Arc consistency detects failure earlier than forward checking
 - What’s the downside of enforcing arc consistency?
 - Can be run as a preprocessor or after each assignment
Arc Consistency

Function: \(AC-\text{step}() \) returns the CSP, possibly with reduced domains
inputs: \(csp \), a binary CSP with variables \(\{X_1, X_2, \ldots, X_n\} \)
local variables: \(qe \), a queue of arcs, initially all the arcs in \(csp \)
while queue is not empty do
(\(X_i, X_j \)) := Remove-First(queue)
if Remove-Inconsistent-Value(\(X_i, X_j \)) then
for each \(X_i \) in Neighbors(\(X_j \)) do
add (\(X_j, X_i \)) to queue
end if
end while

Function: Remove-Inconsistent-Value(\(X_i, X_j \)) returns true if succeeds
\(\text{removed} \) := false
for each \(c \in \text{Domain}(\(X_j \)) \) do
if no value \(c' \) in \(\text{Domain}(\(X_i \)) \) allows \((c,c') \) to satisfy the constraint \(X_i \rightarrow X_j \)
then delete \(c \) from \(\text{Domain}(\(X_j \)) \), \(\text{removed} \) := true
end if
end for
return \(\text{removed} \)

- Runtime: \(O(n^2d^2) \), can be reduced to \(O(n^2d^2) \)
- ... but detecting all possible future problems is NP-hard — why?

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

What went wrong here? [DEMO]