Today

- Efficient Solution of CSPs
- Local Search
Reminder: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a subset of the possible tuples)

- Unary Constraints
- Binary Constraints
- N-ary Constraints

Backtracking Search

```python
function BACKTRACKING-SEARCH(esp) returns solution/failure
    return RECURSIVE-BACKTRACKING({}, esp)

function RECURSIVE-BACKTRACKING(assignment, esp) returns solution/failure
    if assignment is complete then return assignment
    var ← SELECT-UNASSIGNED-VARIABLE(Variables[esp], assignment, esp)
    for each value in ORDER-DOMAIN-VALUES(var, assignment, esp) do
        if value is consistent with assignment given CONSTRAINTS[esp] then
            add {var = value} to assignment
            result ← RECURSIVE-BACKTRACKING(assignment, esp)
            if result ̸= failure then return result
            remove {var = value} from assignment
    return failure
```

- Backtracking = DFS + var-ordering + fail-on-violation
- What are the choice points?

[demo: backtracking]
Improving Backtracking

- General-purpose ideas give huge gains in speed

- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?

- Filtering: Can we detect inevitable failure early?

- Structure: Can we exploit the problem structure?

Filtering: Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values
Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

 NT and SA cannot both be blue!
 Why didn't we detect this yet?
 Constraint propagation propagates from constraint to constraint

Consistency of An Arc

- An arc $X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

- Forward checking = Enforcing consistency of each arc pointing to the new assignment
Arc Consistency of a CSP

- A simple form of propagation makes sure all arcs are consistent:

- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What’s the downside of enforcing arc consistency?
- Can be run as a preprocessor or after each assignment

Establishing Arc Consistency

```plaintext
function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, ..., X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
    (X_i, X_j) ← REMOVE-FIRST(queue)
    if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then
        for each X_k in Neighbors[X_i] do
            add (X_k, X_j) to queue
```

```plaintext
function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds
removed ← false
for each x in Domain[X_i] do
    if no value y in Domain[X_j] allows (x, y) to satisfy the constraint X_i → X_j
    then delete x from Domain[X_i]; removed ← true
return removed
```

- Runtime: $O(n^2d^3)$, can be reduced to $O(n^2d^2)$
- … but detecting all possible future problems is NP-hard – why?
Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

What went wrong here?

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute
- (You need to know the k=2 algorithm)
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, … 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - …
- Lots of middle ground between arc consistency and n-consistency! (e.g. path consistency)

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
 - Worst-case solution cost is $O((n/c)(d^c))$, linear in n
 - E.g., n = 80, d = 2, c = 20
 - $2^{80} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n \cdot d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$
 - This property also applies to probabilistic reasoning (later): an important example of the relation between syntactic restrictions and the complexity of reasoning.

Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering

For $i = n : 2$, apply $\text{RemoveInconsistent}($Parent$(X_i), X_i)$

For $i = 1 : n$, assign X_i consistently with Parent(X_i)

Runtime: $O(n \cdot d^2)$ (why?)
Tree-Structured CSPs

- Why does this work?
- Claim: After processing the right k nodes, given any satisfying assignment to the rest, the right k can be assigned (left to right) without backtracking
- Proof: Induction on position

Why doesn’t this algorithm work with loops?

Note: we’ll see this basic idea again with Bayes’ nets

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^2) (n-c) d^2)$, very fast for small c
Tree Decompositions*

- Create a tree-structured graph of overlapping subproblems, each is a mega-variable
- Solve each subproblem to enforce local constraints
- Solve the CSP over subproblem mega-variables using our efficient tree-structured CSP algorithm

Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned
- To apply to CSPs:
 - Start with some assignment with unsatisfied constraints
 - Operators reassign variable values
 - No fringe! Live on the edge.
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - i.e., hill climb with $h(n) = \text{total number of violated constraints}$
Example: 4-Queens

- States: 4 queens in 4 columns \((4^4 = 256\) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(c(n) = \text{number of attacks}\)

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary \(n\) with high probability (e.g., \(n = 10,000,000\))
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[
R = \frac{\text{number of constraints}}{\text{number of variables}}
\]
Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., enforcing arc consistency) does additional work to constrain values and detect inconsistencies
- Constraint graphs allow for analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

Local Search Methods

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve what you have until you can’t make it better
- Generally much faster and more memory efficient (but incomplete)
Types of Search Problems

- **Planning problems:**
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - *Incremental formulations*

- **Identification problems:**
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - *Complete-state formulations*
 - Iterative improvement algorithms

Hill Climbing

- **Simple, general idea:**
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit

- **Why can this be a terrible idea?**
 - Complete?
 - Optimal?

- **What’s good about it?**
Simulated Annealing

- **Idea:** Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem  
schedule, a mapping from time to "temperature"
local variables: current, a node  
next, a node  
T, a "temperature" controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] − VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^ΔE/T
```
Simulated Annealing

- **Theoretical guarantee:**
 - Stationary distribution: \(p(x) \propto e^{E(x)/T} \)
 - If \(T \) decreased slowly enough, will converge to optimal state!

- **Is this an interesting guarantee?**

- **Sounds like magic, but reality is reality:**
 - The more downhill steps you need to escape, the less likely you are to ever make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation
- Probably the most misunderstood, misapplied (and even maligned) technique around!
Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?