Today

- Efficient Solution of CSPs
- Local Search

Reminder: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a subset of the possible tuples)
- Unary Constraints
- Binary Constraints
- N-ary Constraints

Backtracking Search

- Backtracking = DFS + var-ordering + fail-on-violation
- What are the choice points?

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Filtering: Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values
Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn’t provide early detection for all failures.
- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- Constraint propagation propagates from constraint to constraint

Consistency of An Arc

- An arc \(X \rightarrow Y \) is consistent iff for every \(x \) in the tail there is some \(y \) in the head which could be assigned without violating a constraint

Arc Consistency of a CSP

- A simple form of propagation makes sure all arcs are consistent:
- If \(X \) loses a value, neighbors of \(X \) need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What’s the downside of enforcing arc consistency?
- Can be run as a preprocessor or after each assignment

Establishing Arc Consistency

- Function \(AC(X, \text{copy}) \) returns the CSP, possibly with reduced domains
- If \(X \rightarrow Y \) is inconsistent, remove \(X \) from the CSP

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each \(k \) nodes, any consistent assignment to \(k-1 \) can be extended to the \(k^{th} \) node.
 - Higher \(k \) more expensive to compute
 - (You need to know the \(k=2 \) algorithm)
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ..., 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. path consistency)

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
 - Worst-case solution cost is \(O(n c d^c) \), linear in n
 - E.g., \(n = 80, d = 2, c = 20 \)
 - \(2^{20} = 4 \) billion years at 10 million nodes/sec
- \(4 \times 2^{20} = 0.4 \) seconds at 10 million nodes/sec

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering
- For \(i = n : 2 \), apply RemoveInconsistent(Parent(X\(_i\)),X\(_i\))
- For \(i = 1 : n \), assign X\(_i\) consistently with Parent(X\(_i\))
- Runtime: \(O(n d^2) \) (why?)

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime \(O((\phi) (n-c) d^c) \), very fast for small c
Tree Decompositions

- Create a tree-structured graph of overlapping subproblems, each is a mega-variable
- Solve each subproblem to enforce local constraints
- Solve the CSP over subproblem mega-variables using our efficient tree-structured CSP algorithm

Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $c(n) = \text{number of attacks}$

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[
R = \frac{\text{number of constraints}}{\text{number of variables}}
\]

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
 - Backtracking = depth-first search with one legal variable assigned per node
 - Variable ordering and value selection heuristics help significantly
 - Forward checking prevents assignments that guarantee later failure
 - Constraint propagation (e.g., enforcing arc consistency) does additional work to constrain values and detect inconsistencies
 - Constraint graphs allow for analysis of problem structure
 - Tree-structured CSPs can be solved in linear time
 - Iterative min-conflicts is usually effective in practice

Local Search Methods

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve what you have until you can’t make it better
- Generally much faster and more memory efficient (but incomplete)
Types of Search Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations

- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - Iterative improvement algorithms

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit

Why can this be a terrible idea?
- Complete?
- Optimal?
- What’s good about it?

Hill Climbing Diagram

- Random restarts?
- Random sideways steps?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

Theoretical guarantee:
- Stationary distribution: \(p(x) \propto e^{-E(x)/T} \)
- If \(T \) decreased slowly enough, will converge to optimal state!

Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to ever make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation
- Probably the most misunderstood, misapplied (and even maligned) technique around!
Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?