Expectimax Search Trees

- What if we don’t know what the result of an action will be? E.g.,
 - In solitaire, next card is unknown
 - In minesweeper, mine locations
 - In pacman, the ghosts act randomly

- Can do expectimax search to maximize average score
 - Chance nodes, like min nodes, except the outcome is uncertain
 - Calculate expected utilities
 - Max nodes as in minimax search
 - Chance nodes take average (expectation) of value of children

- Later, we’ll learn how to formalize the underlying problem as a Markov Decision Process

[DEMO: minVsExp]
Expectimax Pseudocode

```python
def value(s):
    if s is a max node return maxValue(s)
    if s is an exp node return expValue(s)
    if s is a terminal node return evaluation(s)

def maxValue(s):
    values = [value(s') for s' in successors(s)]
    return max(values)

def expValue(s):
    values = [value(s') for s' in successors(s)]
    weights = [probability(s, s') for s' in successors(s)]
    return expectation(values, weights)
```

Expectimax Quantities

```
3 12 9 2 4 6 15 6 0
```
Expectimax Pruning?

Expectimax Search

- **Chance nodes**
 - Chance nodes are like min nodes, except the outcome is uncertain
 - Calculate *expected utilities*
 - Chance nodes average successor values (weighted)

- Each chance node has a probability distribution over its outcomes (called a model)
 - For now, assume we're given the model

- Utilities for terminal states
 - Static evaluation functions give us limited-depth search

Estimate of true expectimax value (which would require a lot of work to compute)
Expectimax for Pacman

- Notice that we’ve gotten away from thinking that the ghosts are trying to minimize pacman’s score
- Instead, they are now a part of the environment
- Pacman has a belief (distribution) over how they will act
- Quiz: Can we see minimax as a special case of expectimax?
- Quiz: what would pacman’s computation look like if we assumed that the ghosts were doing 1-ply minimax and taking the result 80% of the time, otherwise moving randomly?
- If you take this further, you end up calculating belief distributions over your opponents’ belief distributions over your belief distributions, etc…
 - Can get unmanageable very quickly!

<table>
<thead>
<tr>
<th>Results from playing 5 games</th>
<th>[demo: world assumptions]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimizing Ghost</td>
</tr>
<tr>
<td>Minimax Pacman</td>
<td>Won 5/5</td>
</tr>
<tr>
<td>Avg. Score: 493</td>
<td>Avg. Score: 483</td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td>Won 1/5</td>
</tr>
<tr>
<td>Avg. Score: -303</td>
<td>Avg. Score: 503</td>
</tr>
</tbody>
</table>

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman
Expectimax Utilities

- For minimax, terminal function scale doesn’t matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations

- For expectimax, we need magnitudes to be meaningful

Maximum Expected Utility

- Why should we average utilities? Why not minimax?

- Principle of maximum expected utility:
 - A rational agent should chose the action which maximizes its expected utility, given its knowledge

- Questions:
 - Where do utilities come from?
 - How do we know such utilities even exist?
 - Why are we taking expectations of utilities (not, e.g. minimax)?
 - What if our behavior can’t be described by utilities?
Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent’s preferences.

- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent’s goals
 - Theorem: any “rational” preferences can be summarized as a utility function

- We hard-wire utilities and let behaviors emerge
 - Why don’t we let agents pick utilities?
 - Why don’t we prescribe behaviors?

Utilities: Uncertain Outcomes

- Going to airport from home

 - Get Double
 - Get Single

 - Oops
 - Whew
Preferences

- An agent chooses among:
 - Prizes: A, B, etc.
 - Lotteries: situations with uncertain prizes
 \[L = [p, A; (1 - p), B] \]

- Notation:
 \[
 \begin{align*}
 A &\succ B & \text{A preferred over B} \\
 A &\sim B & \text{indifference between A and B} \\
 A &\succeq B & \text{B not preferred over A}
 \end{align*}
 \]

Rational Preferences

- We want some constraints on preferences before we call them rational
 \[(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)\]

- For example: an agent with intransitive preferences can be induced to give away all of its money
 - If $B \succ C$, then an agent with C would pay (say) 1 cent to get B
 - If $A \succ B$, then an agent with B would pay (say) 1 cent to get A
 - If $C \succ A$, then an agent with A would pay (say) 1 cent to get $C
Rational Preferences

- Preferences of a rational agent must obey constraints.
 - The axioms of rationality:
 - Orderability
 \[(A \succ B) \lor (B \succ A) \lor (A \sim B)\]
 - Transitivity
 \[(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)\]
 - Continuity
 \[A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1 - p, C] \sim B\]
 - Substitutability
 \[A \sim B \Rightarrow [p, A; \ 1 - p, C] \sim [p, B; \ 1 - p, C]\]
 - Monotonicity
 \[A \succ B \Rightarrow (p \geq q \iff [p, A; \ 1 - p, B] \succeq [q, A; \ 1 - q, B])\]

- Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
 - [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function U such that:
 \[U(A) \geq U(B) \iff A \succeq B\]
 \[U([p_1, S_1; \ldots ; p_n, S_n]) = \sum_i p_i U(S_i)\]

- Maximum expected likelihood (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner
Utility Scales

- Normalized utilities: $u_+ = 1.0$, $u_- = 0.0$
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

$U'(x) = k_1 U(x) + k_2$ where $k_1 > 0$

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
 - Compare a state A to a standard lottery L_p between
 - “best possible prize” u_+ with probability p
 - “worst possible catastrophe” u_- with probability $1-p$
 - Adjust lottery probability p until $A \sim L_p$
 - Resulting p is a utility in $[0,1]$

pay $30 \sim$
Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt).
- Given a lottery $L = [p, X; (1-p), Y]$:
 - The expected monetary value $EMV(L) = pX + (1-p)Y$
 - $U(L) = pU(X) + (1-p)U(Y)$
- Typically, $U(L) < U(EMV(L))$: why?
- In this sense, people are risk-averse.
- When deep in debt, we are risk-prone.

Utility curve: for what probability p am I indifferent between:
- Some sure outcome x
- A lottery $[p, M; (1-p), 0]$, M large

Example: Insurance

- Consider the lottery $[0.5, 1000; 0.5, 0]$
 - What is its expected monetary value? ($500)$
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - 400 for most people
 - Difference of 100 is the insurance premium
 - There’s an insurance industry because people will pay to reduce their risk
 - If everyone were risk-neutral, no insurance needed!
Example: Insurance

- Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties’ expected utility.

You own a car. Your lottery:
\[L_Y = [0.8, \$0 ; 0.2, -$200] \]
i.e., 20% chance of crashing.

You do not want -$200!

\[U_Y(L_Y) = 0.2*U_Y(-$200) = -200 \]
\[U_Y(-$50) = -150 \]

<table>
<thead>
<tr>
<th>Amount</th>
<th>Your Utility</th>
<th>U_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-$50</td>
<td>-150</td>
<td></td>
</tr>
<tr>
<td>-$200</td>
<td>-1000</td>
<td></td>
</tr>
</tbody>
</table>

Insurance company buys risk:
\[L_I = [0.8, \$50 ; 0.2, -$150] \]
i.e., $50 revenue + your \(L_Y \)

Insurer is risk-neutral:
\[U(L) = U(EMV(L)) \]
\[U_I(L_I) = U(0.8*50 + 0.2*(-150)) \]
\[= U($10) > U($0) \]
Example: Human Rationality?

- Famous example of Allais (1953)
 - A: [0.8, $4k; 0.2, $0]
 - B: [1.0, $3k; 0.0, $0]
 - C: [0.2, $4k; 0.8, $0]
 - D: [0.25, $3k; 0.75, $0]

- Most people prefer B > A, C > D
- But if U($0) = 0, then
 - B > A ⇒ U($3k) > 0.8 U($4k)
 - C > D ⇒ 0.8 U($4k) > U($3k)

Non-Zero-Sum Utilities

- Similar to minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own utility
 - Can give rise to cooperation and competition dynamically…

- Node values are utility tuples
- Terminal utilities are shown in the diagram.
Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

Expectiminimax-Value($state$):

```plaintext
if $state$ is a MAX node then
  return the highest Expectiminimax-Value of Successors($state$)

if $state$ is a MIN node then
  return the lowest Expectiminimax-Value of Successors($state$)

if $state$ is a chance node then
  return average of Expectiminimax-Value of Successors($state$)
```

Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth $2 = 20 \times (21 \times 20)^3 = 1.2 \times 10^9$

- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier…

- TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play

- 1st AI world champion in any game!