Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s, a, s') \)
 - A reward function \(R(s, a, s') \)
 - Still looking for a policy \(\pi(s) \)
 - New twist: don’t know \(T \) or \(R \)
 - I.e., don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

The Story So Far: MDPs and RL

Things we know how to do:

- If we know the MDP
 - Compute \(V^*, Q^*, \pi^* \) exactly
- If we don’t know the MDP
 - We can estimate the MDP then solve
 - We can estimate \(V \) for a fixed policy \(\pi \)
 - We can estimate \(Q^*(s, a) \) for the optimal policy while executing an exploration policy

Techniques:

- Model-based DPs
 - Value and policy iteration
 - Policy evaluation
- Model-based RL
- Model-free RL:
 - Value learning
 - Q-learning

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes \((s, a, r, s', r', s'', r', s''', r', s'''', ...)\)
 - Update estimates each transition \((s, a, r, s')\)
 - Over time, updates will mimic Bellman updates
- Q-Value iteration (model-based, requires known MDP)
 \[Q_{t+1}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_t(s', a') \right] \]
- Q-Learning (model-free, requires only experienced transitions)
 \[Q(s, a) = (1 - \alpha) Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') \right] \]

Q-Learning

- We’d like to do Q-value updates to each Q-state:
 \[Q_{t+1}(s, a) \rightarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_t(s', a') \right] \]
- But can’t compute this update without knowing \(T \), \(R \)
- Instead, compute average as we go
 - Receive a sample transition \((s, a, r, s')\)
 - This sample suggests
 \[Q(s, a) \approx r + \gamma \max_{a'} Q(s', a') \]
 (Why?)
 - So keep a running average
 \[Q(s, a) = (1 - \alpha) Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') \right] \]

Q-Learning Properties

- Will converge to optimal policy
 - If you explore enough (i.e., visit each q-state many times)
 - If you make the learning rate small enough
 - Basically doesn’t matter how you select actions (!)
- Off-policy learning: learns optimal q-values, not the values of the policy you are following
Q-Learning

- Q-learning produces tables of q-values:

![Q-values table]

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy
 - Regret: expected gap between rewards during learning and rewards from optimal action
 - Q-learning with random actions will converge to optimal values, but possibly very slowly, and will get low rewards on the way
 - Results will be optimal but regret will be large
 - How to make regret small?

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better ideas: explore areas whose badness is not (yet) established, explore less over time
 - One way: exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. \(f(u, n) = u + k/n \) (exact form not important)

\[
Q_{t+1}(s, a) = R(s, a, s') + \gamma \max_{a'} Q_t(s', a') \\
Q_{t+1}(s, a) = R(s, a, s') + \gamma \max_{a'} f(Q_t(s', a'), N(s', a'))
\]

Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
 - Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we’ll see it over and over again

Example: Pacman

- Let’s say we discover through experience that this state is bad:
 - In naïve q learning, we know nothing about this state or its q states:
 - Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1/ (dist to dot)?
 - Is Pacman in a tunnel? (0/1)
 - _____ etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:
 \[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Function Approximation

- Q-learning with linear q-functions:
 \[Q(s, a) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s, a) \]

- Q-learning with linear q-functions:
 \[Q(s, a) = w_1 f_1(s) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Exact Q’s

- Approximate Q’s

Example: Q-Pacman

- Q(s, a) = 4.0f_{DOT}(s, a) − 1.0f_{GHOST}(s, a)
- f_{DOT}(s, NORTH) = 0.5
- f_{GHOST}(s, NORTH) = 1.0
- Q(s, a) = +1
- R(s, a, s') = −500
- difference \(\approx -501\)
- \(w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5\)
- \(w_{GHOST} \leftarrow -1.0 + \alpha [-501] 1.0\)
- Q(s, a) = 3.0f_{DOT}(s, a) − 3.0f_{GHOST}(s, a)

Linear Regression

- Prediction
 \[\hat{y} = w_0 + w_1 f_1(x) \]

- Minimizing Error

- Imagine we had only one point \(x\) with features \(f(x)\):
 \[\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2 \]
 \[\frac{\partial \text{error}(w)}{\partial w_m} = -\left(y - \sum_k w_k f_k(x) \right) f_m(x) \]
 \[w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a) - Q(s, a) \right] f_m(x) \]
Problem: often the feature-based policies that work well aren’t the ones that approximate \(V \) / \(Q \) best
- E.g., your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
- We’ll see this distinction between modeling and prediction again later in the course

Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter

Simplest policy search:
- Start with an initial linear value function or q-function
- Nudge each feature weight up and down and see if your policy is better than before

Problems:
- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical

Advanced policy search:
- Write a stochastic (soft) policy:
 \[\pi_w(s) \propto e^{\sum_i w_i f_i(s, a)} \]
 - Turns out you can efficiently approximate the derivative of the returns with respect to the parameters \(w \) (optional material)
 - Take uphill steps, recalculate derivatives, etc.

We’re done with search and planning!
- Next, we’ll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - … lots more!
- Last part of course: machine learning