Probabilistic Models

- Models describe how (a portion of) the world works

- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - “All models are wrong; but some are useful.”
 – George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information
Model for Ghostbusters

- Reminder: ghost is hidden, sensors are noisy
- T: Top sensor is red
 - B: Bottom sensor is red
 - G: Ghost is in the top
- Queries:
 - $P(+g) = ??$
 - $P(+g | +t) = ??$
 - $P(+g | +t, -b) = ??$
- Problem: joint distribution too large / complex

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>B</th>
<th>G</th>
<th>$P(T,B,G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>+t</td>
<td>+b</td>
<td>+g</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>+t</td>
<td>+b</td>
<td>-g</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>+t</td>
<td>-b</td>
<td>+g</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>+t</td>
<td>-b</td>
<td>-g</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>+b</td>
<td>+g</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>+b</td>
<td>-g</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>-b</td>
<td>+g</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>-b</td>
<td>-g</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

Independence

- Two variables are independent if:
 \[\forall x, y : P(x, y) = P(x)P(y) \]
 - This says that their joint distribution factors into a product two simpler distributions
 - Another form:
 \[\forall x, y : P(x|y) = P(x) \]
 - We write: $X \perp Y$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best “close” to independent
 - What could we assume for \{Weather, Traffic, Cavity, Toothache\}?
Example: Independence

- N fair, independent coin flips:

\[
P(X_1) \quad P(X_2) \quad \ldots \quad P(X_n)
\]

\[
\begin{array}{c|c}
 h & 0.5 \\
 t & 0.5
\end{array}
\quad
\begin{array}{c|c}
 h & 0.5 \\
 t & 0.5
\end{array}
\quad \ldots \\
\begin{array}{c|c}
 h & 0.5 \\
 t & 0.5
\end{array}
\]

\[
P(X_1, X_2, \ldots, X_n)
\]

\[
2^n
\]

Example: Independence?

\[
P(T)
\]

\[
P_1(T, W)
\]

\[
<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[
P_2(T, W)
\]

\[
P(W)
\]

\[
<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
<tr>
<td>warm</td>
<td>sun</td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
</tr>
</tbody>
</table>
Conditional Independence

- \(P(\text{Toothache}, \text{Cavity}, \text{Catch}) \)

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 \[P(+\text{catch} \mid +\text{toothache}, +\text{cavity}) = P(+\text{catch} \mid +\text{cavity}) \]

- The same independence holds if I don’t have a cavity:
 \[P(+\text{catch} \mid +\text{toothache}, -\text{cavity}) = P(+\text{catch} \mid -\text{cavity}) \]

- Catch is conditionally independent of Toothache given Cavity:
 \[P(\text{Catch} \mid \text{Toothache}, \text{Cavity}) = P(\text{Catch} \mid \text{Cavity}) \]

- Equivalent statements:
 - \(P(\text{Toothache} \mid \text{Catch}, \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) \)
 - \(P(\text{Toothache}, \text{Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) \) \(P(\text{Catch} \mid \text{Cavity}) \)
 - One can be derived from the other easily

Unconditional (absolute) independence very rare (why?)

Conditional independence is our most basic and robust form of knowledge about uncertain environments:

\[
\forall x, y, z : P(x, y \mid z) = P(x \mid z)P(y \mid z) \\
X \perp Y \mid Z
\]

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about fire, smoke, alarm?
The Chain Rule

\[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \ldots \]

- Trivial decomposition:
 \[P(\text{Traffic, Rain, Umbrella}) = \]
 \[P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain, Traffic}) \]

- With assumption of conditional independence:
 \[P(\text{Traffic, Rain, Umbrella}) = \]
 \[P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}) \]

- Bayes’ nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- \(T: \) Top square is red
 \(B: \) Bottom square is red
 \(G: \) Ghost is in the top

- Givens:
 \[P(\text{+} g) = 0.5 \]
 \[P(\text{+} t | \text{+} g) = 0.8 \]
 \[P(\text{+} t | \text{-} g) = 0.4 \]
 \[P(\text{+} b | \text{+} g) = 0.4 \]
 \[P(\text{+} b | \text{-} g) = 0.8 \]

\[
P(T, B, G) = P(G)P(T|G)P(B|G)
\]

<table>
<thead>
<tr>
<th>T</th>
<th>B</th>
<th>G</th>
<th>(P(T, B, G))</th>
</tr>
</thead>
<tbody>
<tr>
<td>+t</td>
<td>+b</td>
<td>+g</td>
<td>0.16</td>
</tr>
<tr>
<td>+t</td>
<td>+b</td>
<td>−g</td>
<td>0.16</td>
</tr>
<tr>
<td>+t</td>
<td>−b</td>
<td>+g</td>
<td>0.24</td>
</tr>
<tr>
<td>+t</td>
<td>−b</td>
<td>−g</td>
<td>0.04</td>
</tr>
<tr>
<td>−t</td>
<td>+b</td>
<td>+g</td>
<td>0.04</td>
</tr>
<tr>
<td>−t</td>
<td>+b</td>
<td>−g</td>
<td>0.24</td>
</tr>
<tr>
<td>−t</td>
<td>−b</td>
<td>+g</td>
<td>0.06</td>
</tr>
<tr>
<td>−t</td>
<td>−b</td>
<td>−g</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Bayes’ Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes’ nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we’ll be vague about how these interactions are specified

Example Bayes’ Net: Insurance
Example Bayes’ Net: Car

Graphical Model Notation

- **Nodes**: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- **Arcs**: interactions
 - Similar to CSP constraints
 - Indicate “direct influence” between variables
 - Formally: encode conditional independence (more later)

- For now: imagine that arrows mean direct causation (in general, they don’t!)
Example: Coin Flips

- N independent coin flips

\[X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_n \]

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic

- Model 1: independence

- Model 2: rain causes traffic

- Why is an agent using model 2 better?
Example: Traffic II

- Let’s build a causal graphical model

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
Bayes’ Net Semantics

- Let’s formalize the semantics of a Bayes’ net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
 - CPT: conditional probability table
 - Description of a noisy “causal” process

* A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]
 - Example:
 \[P(\text{+cavity}, \text{+catch}, \neg\text{toothache}) \]
- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies
Example: Coin Flips

\(P(h, h, t, h) = \)

Only distributions whose variables are absolutely independent can be represented by a Bayes’ net with no arcs.

Example: Traffic

\(P(+r, -t) = \)

\begin{align*}
P(R) & \begin{array}{c|c} +r & 1/4 \\ \hline
-\overline{r} & 3/4 \\ \hline
\end{array} \\
P(T|R) & \begin{array}{c|c|c} +r & +t & 3/4 \\ \hline
\overline{r} & +t & 1/2 \\
\hline
-\overline{r} & -t & 1/4 \\
\hline
\end{array} \\
\end{align*}
Example: Alarm Network

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>−b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

Example: Traffic

- **Causal direction**

| P(R) | P(T|R) |
|------|--------|
| r | t 3/4 |
| r | t 1/4 |
| −r | t 3/4 |
| −r | t 1/4 |
| t | −t 1/4 |
| t | −t 1/2 |
| −t | −t 1/2 |
| −t | −t 6/16 |
| −t | −t 6/16 |

<table>
<thead>
<tr>
<th>P(R)</th>
<th>P(T, R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>t 3/16</td>
</tr>
<tr>
<td>r</td>
<td>t 1/16</td>
</tr>
<tr>
<td>−r</td>
<td>t 3/16</td>
</tr>
<tr>
<td>−r</td>
<td>t 1/16</td>
</tr>
<tr>
<td>t</td>
<td>−t 1/4</td>
</tr>
<tr>
<td>t</td>
<td>−t 1/2</td>
</tr>
<tr>
<td>−t</td>
<td>−t 1/2</td>
</tr>
<tr>
<td>−t</td>
<td>−t 6/16</td>
</tr>
<tr>
<td>−t</td>
<td>−t 6/16</td>
</tr>
</tbody>
</table>
Example: Reverse Traffic

- Reverse causality?

\[
P(T) \hspace{1cm} P(T, R)
\begin{array}{c|c|c|}
 \text{t} & 9/16 & r \\
 \neg t & 7/16 & \neg r \\
\end{array}
\begin{array}{c|c|c|}
 r & t & 3/16 \\
 r & \neg t & 1/16 \\
\end{array}
\begin{array}{c|c|c|}
 \neg t & r & 1/3 \\
 \neg t & \neg r & 2/3 \\
\end{array}
\begin{array}{c|c|c|}
 \neg r & t & 6/16 \\
 \neg r & \neg t & 6/16 \\
\end{array}
\]

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables Traffic and Drips
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence
Bayes’ Nets

- So far: how a Bayes’ net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Key idea: conditional independence
 - Today: assembled BNs using an intuitive notion of conditional independence as causality
 - Next: formalize these ideas
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)