Announcements

- **Midterm**
 - Next TUESDAY, 10/25, 5-8pm
 - Prep page is on the web (practice exams, etc)
 - Topical review sessions: see prep page
 - Overall review: in class Thursday
 - If you have a conflict, we should already know about it!

- **Written 3**
 - Due this Friday but fixes not due until NEXT Friday

- **P1, P2, W1 in glookup**

CS 188: Artificial Intelligence
Fall 2011

Lecture 16: Bayes Nets IV
10/18/2011

Dan Klein – UC Berkeley
Approximate Inference

Simulation has a name: sampling

Sampling is a hot topic in machine learning, and it’s really simple

Basic idea:
- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P

Why sample?
- Learning: get samples from a distribution you don’t know
- Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)
Prior Sampling

- This process generates samples with probability:
 \[S_{PS}(x_1 \ldots x_n) = \prod_{i=1}^{n} P(x_i | \text{Parents}(X_i)) = P(x_1 \ldots x_n) \]
 \(\ldots \text{i.e. the BN's joint probability} \)

- Let the number of samples of an event be \(N_{PS}(x_1 \ldots x_n) \)

- Then
 \[\lim_{N \to \infty} \hat{P}(x_1, \ldots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \ldots, x_n)/N \]
 \[= S_{PS}(x_1, \ldots, x_n) \]
 \[= P(x_1 \ldots x_n) \]

- I.e., the sampling procedure is consistent
Example

- First: Get a bunch of samples from the BN:
 - +c, -s, +r, +w
 - +c, +s, +r, +w
 - -c, +s, +r, -w
 - +c, -s, +r, +w
 - -c, -s, -r, +w

- Example: we want to know P(W)
 - We have counts <+w:4, -w:1>
 - Normalize to get approximate P(W) = <+w:0.8, -w:0.2>
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
 - Fast: can use fewer samples if less time (what’s the drawback?)

Rejection Sampling

- Let’s say we want P(C)
 - No point keeping all samples around
 - Just tally counts of C as we go

- Let’s say we want P(C| +s)
 - Same thing: tally C outcomes, but ignore (reject) samples which don’t have S=+s
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)
Sampling Example

- There are 2 cups.
 - The first contains 1 penny and 1 quarter
 - The second contains 2 quarters

- Say I pick a cup uniformly at random, then pick a coin randomly from that cup. It’s a quarter (yes!). What is the probability that the other coin in that cup is also a quarter?

Likelihood Weighting

- Problem with rejection sampling:
 - If evidence is unlikely, you reject a lot of samples
 - You don’t exploit your evidence as you sample
 - Consider \(P(B|+a) \)

- Idea: fix evidence variables and sample the rest

- Problem: sample distribution not consistent!
- Solution: weight by probability of evidence given parents
Likelihood Weighting

- Sampling distribution if z sampled and e fixed evidence

$$S_{WS}(z, e) = \prod_{i=1}^{l} P(z_i|\text{Parents}(Z_i))$$

- Now, samples have weights

$$w(z, e) = \prod_{i=1}^{m} P(e_i|\text{Parents}(E_i))$$

- Together, weighted sampling distribution is consistent

$$S_{WS}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i|\text{Parents}(Z_i)) \prod_{i=1}^{m} P(e_i|\text{Parents}(E_i))$$

$$= P(z, e)$$
Likelihood Weighting

- Likelihood weighting is good
 - We have taken evidence into account as we generate the sample
 - E.g. here, W’s value will get picked based on the evidence values of S, R
 - More of our samples will reflect the state of the world suggested by the evidence
- Likelihood weighting doesn’t solve all our problems
 - Evidence influences the choice of downstream variables, but not upstream ones (C isn’t more likely to get a value matching the evidence)
- We would like to consider evidence when we sample every variable

Markov Chain Monte Carlo*

- Idea: instead of sampling from scratch, create samples that are each like the last one.
- Procedure: resample one variable at a time, conditioned on all the rest, but keep evidence fixed. E.g., for P(B|+c):

- Properties: Now samples are not independent (in fact they’re nearly identical), but sample averages are still consistent estimators!
- What’s the point: both upstream and downstream variables condition on evidence.
Decision Networks

- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
- New node types:
 - Chance nodes (just like BNs)
 - Actions (rectangles, cannot have parents, act as observed evidence)
 - Utility node (diamond, depends on action and chance nodes)

Decision Networks

- Action selection:
 - Instantiate all evidence
 - Set action node(s) each possible way
 - Calculate posterior for all parents of utility node, given the evidence
 - Calculate expected utility for each action
 - Choose maximizing action
Example: Decision Networks

Umbrella = leave
EU(leave) = \sum_{w} P(w)U(leave, w)
= 0.7 \cdot 100 + 0.3 \cdot 0 = 70

Umbrella = take
EU(take) = \sum_{w} P(w)U(take, w)
= 0.7 \cdot 20 + 0.3 \cdot 70 = 35

Optimal decision = leave
MEU(\alpha) = \max_{\alpha} EU(\alpha) = 70

Decisions as Outcome Trees

- Almost exactly like expectimax / MDPs
- What’s changed?
Evidence in Decision Networks

- Find \(P(W|F=bad) \)
 - Select for evidence
 - First we join \(P(W) \) and \(P(bad|W) \)
 - Then we normalize

Example: Decision Networks

\[
\text{Umbrella} = \text{leave} \\
\text{EU}(\text{leave}|\text{bad}) = \sum_w P(w|\text{bad}) U(\text{leave}, w) \\
= 0.34 \cdot 100 + 0.66 \cdot 0 = 34
\]

\[
\text{Umbrella} = \text{take} \\
\text{EU}(\text{take}|\text{bad}) = \sum_w P(w|\text{bad}) U(\text{take}, w) \\
= 0.34 \cdot 20 + 0.66 \cdot 70 = 53
\]

Optimal decision = take

\[
\text{MEU}(F = \text{bad}) = \max_w \text{EU}(a|\text{bad}) = 53
\]
Decisions as Outcome Trees

Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network

- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2

- Question: what's the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say "oil in a" or "oil in b," prob 0.5 each
 - If we know OilLoc, MEU is k (either way)
 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k/2
 - Fair price of information: k/2
Value of Information

- Assume we have evidence $E=e$. Value if we act now:
 \[\text{MEU}(e) = \max_a \sum_s P(s|e) \, U(s, a) \]

- Assume we see that $E' = e'$. Value if we act then:
 \[\text{MEU}(e, e') = \max_a \sum_s P(s|e, e') \, U(s, a) \]

- BUT E' is a random variable whose value is unknown, so we don't know what e' will be

- Expected value if E' is revealed and then we act:
 \[\text{MEU}(e, E') = \sum_{e'} P(e'|e) \text{MEU}(e', e') \]

- Value of information: how much MEU goes up by revealing E' first then acting, over acting now:
 \[VPI(E'|e) = \text{MEU}(e, E') - \text{MEU}(e) \]

VPI Example: Weather

MEU with no evidence
\[\text{MEU}(a) = \max_a \text{EU}(a) = 70 \]

MEU if forecast is bad
\[\text{MEU}(F = \text{bad}) = \max_a \text{EU}(a|\text{bad}) = 53 \]

MEU if forecast is good
\[\text{MEU}(F = \text{good}) = \max_a \text{EU}(a|\text{good}) = 95 \]

Forecast distribution

\[
\begin{array}{c|c|c|c}
F & P(F) & \text{MEU}(F|e) & \text{MEU}(F|e') \\
\hline
\text{good} & 0.59 & 0.59 \cdot 95 & 0.59 \cdot (95) + 0.41 \cdot (53) - 70 \\
\text{bad} & 0.41 & 0.41 \cdot 53 & 0.59 \cdot (95) + 0.41 \cdot (53) - 70 \\
\end{array}
\]

\[VPI(E'|e) = \left(\sum_{e'} P(e'|e) \text{MEU}(e, e') \right) - \text{MEU}(e) \]
VPI Properties

- Nonnegative
 \[\forall E', e : \text{VPI}(E'|e) \geq 0 \]
- Nonadditive – consider, e.g., obtaining \(E_j \) twice
 \[\text{VPI}(E_j, E_k|e) \neq \text{VPI}(E_j|e) + \text{VPI}(E_k|e) \]
- Order-independent
 \[\text{VPI}(E_j, E_k|e) = \text{VPI}(E_j|e) + \text{VPI}(E_k|e, E_j) \]
 \[= \text{VPI}(E_k|e) + \text{VPI}(E_j|e, E_k) \]

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn’t order either one. What’s the value of knowing which it is?

- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What’s the value of knowing which?

- You’re playing the lottery. The prize will be $0 or $100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?