Decision Networks

- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
- New node types:
 - Chance nodes (just like BNs)
 - Actions (rectangles, cannot have parents, act as observed evidence)
 - Utility node (diamond, depends on action and chance nodes)

[DEMO: Ghostbusters]
Decision Networks

- **Action selection:**
 - Instantiate all evidence
 - Set action node(s) each possible way
 - Calculate posterior for all parents of utility node, given the evidence
 - Calculate expected utility for each action
 - Choose maximizing action

Example: Decision Networks

Umbrella = leave

\[
EU(\text{leave}) = \sum_w P(w)U(\text{leave}, w)
\]

\[
= 0.7 \cdot 100 + 0.3 \cdot 0 = 70
\]

Umbrella = take

\[
EU(\text{take}) = \sum_w P(w)U(\text{take}, w)
\]

\[
= 0.7 \cdot 20 + 0.3 \cdot 70 = 35
\]

Optimal decision = leave

\[
\text{MEU}(\sigma) = \max_a EU(a) = 70
\]
Decisions as Outcome Trees

- Almost exactly like expectimax / MDPs
- What’s changed?

Example: Decision Networks

Umbrella = leave

\[
EU(\text{leave} | \text{bad}) = \sum_w P(w | \text{bad}) U(\text{leave}, w)
\]

\[
= 0.34 \cdot 100 + 0.66 \cdot 0 = 34
\]

Umbrella = take

\[
EU(\text{take} | \text{bad}) = \sum_w P(w | \text{bad}) U(\text{take}, w)
\]

\[
= 0.34 \cdot 20 + 0.66 \cdot 70 = 53
\]

Optimal decision = take

\[
\text{MEU}(F = \text{bad}) = \max_w EU(a | \text{bad}) = 53
\]
Decisions as Outcome Trees

Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network

- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2

- Question: what’s the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say “oil in a” or “oil in b,” prob 0.5 each
 - If we know OilLoc, MEU is k (either way)
 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k/2
 - Fair price of information: k/2
VPI Example: Weather

MEU with no evidence

\[
\text{MEU}(\varnothing) = \max_a \text{EU}(a) = 70
\]

MEU if forecast is bad

\[
\text{MEU}(F = \text{bad}) = \max_a \text{EU}(a|\text{bad}) = 53
\]

MEU if forecast is good

\[
\text{MEU}(F = \text{good}) = \max_a \text{EU}(a|\text{good}) = 95
\]

Forecast distribution

\[
P(F) = \begin{pmatrix}
good & 0.59 \\
bad & 0.41
\end{pmatrix}
\]

\[
\text{VPI}(E|e') = \left(\sum_{e'} P(e'|e)\text{MEU}(e, e') \right) - \text{MEU}(e)
\]

Value of Information

- Assume we have evidence \(E = e\). Value if we act now:
 \[
 \text{MEU}(e) = \max_a \sum_s P(s|e) \text{EU}(s, a)
 \]

- Assume we see that \(E' = e'\). Value if we act then:
 \[
 \text{MEU}(e, e') = \max_a \sum_s P(s|e, e') \text{EU}(s, a)
 \]

- BUT \(E'\) is a random variable whose value is unknown, so we don’t know what \(e'\) will be.

- Expected value if \(E'\) is revealed and then we act:
 \[
 \text{MEU}(e, E') = \sum_{e'} P(e'|e)\text{MEU}(e, e')
 \]

- Value of information: how much MEU goes up by revealing \(E'\) first then acting, over acting now:
 \[
 \text{VPI}(E'|e) = \text{MEU}(e, E') - \text{MEU}(e)
 \]
VPI Properties

- Nonnegative
 \[\forall E', e : \text{VPI}(E'|e) \geq 0 \]
- Nonadditive ---consider, e.g., obtaining \(E_j \) twice
 \[\text{VPI}(E_j, E_k|e) \neq \text{VPI}(E_j|e) + \text{VPI}(E_k|e) \]
- Order-independent
 \[\text{VPI}(E_j, E_k|e) = \text{VPI}(E_j|e) + \text{VPI}(E_k|e, E_j) \]
 \[= \text{VPI}(E_k|e) + \text{VPI}(E_j|e, E_k) \]

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn’t order either one. What’s the value of knowing which it is?

- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What’s the value of knowing which?

- You’re playing the lottery. The prize will be $0 or $100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?
POMDPs

- MDPs have:
 - States S
 - Actions A
 - Transition fn $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$

- POMDPs add:
 - Observations O
 - Observation function $P(o|s)$ (or $O(s,o)$)

- POMDPs are MDPs over belief states b (distributions over S)

- We'll be able to say more in a few lectures

Example: Ghostbusters

- In (static) Ghostbusters:
 - Belief state determined by evidence to date $\{e\}$
 - Tree really over evidence sets
 - Probabilistic reasoning needed to predict new evidence given past evidence

- Solving POMDPs
 - One way: use truncated expectimax to compute approximate value of actions
 - What if you only considered busting or one sense followed by a bust?
 - You get a VPI-based agent!
More Generally

- General solutions map belief functions to actions
 - Can divide regions of belief space (set of belief functions) into policy regions (gets complex quickly)
 - Can build approximate policies using discretization methods
 - Can factor belief functions in various ways

- Overall, POMDPs are very (actually PSACE-) hard

- Most real problems are POMDPs, but we can rarely solve them in general!
Reasoning over Time

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring

- Need to introduce time into our models
 - Basic approach: hidden Markov models (HMMs)
 - More general: dynamic Bayes’ nets

Markov Models

- A Markov model is a chain-structured BN
 - Each node is identically distributed (stationary)
 - Value of X at a given time is called the state
 - As a BN:

\[
\begin{align*}
 &X_1 &\rightarrow &X_2 &\rightarrow &X_3 &\rightarrow &X_4 &\rightarrow &\ldots \\
 P(X_1) &\quad &P(X_2|X_1) &\quad &P(X_3|X_2) &\quad &P(X_4|X_3) &\quad &\ldots
\end{align*}
\]

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial probs)

[DEMO: Ghostbusters]
Conditional Independence

- Basic conditional independence:
 - Past and future independent of the present
 - Each time step only depends on the previous
 - This is called the (first order) Markov property

- Note that the chain is just a (growing) BN
 - We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Example: Markov Chain

- Weather:
 - States: \(X = \{\text{rain}, \text{sun}\} \)
 - Transitions:

 - Initial distribution: 1.0 sun
 - What's the probability distribution after one step?

\[
P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain})
\]

\[
0.9 \cdot 1.0 + 0.1 \cdot 0.0 = 0.9
\]
Mini-Forward Algorithm

- **Question:** probability of being in state x at time t?
- **Slow answer:**
 - Enumerate all sequences of length t which end in s
 - Add up their probabilities

\[
P(X_t = \text{sun}) = \sum_{x_1 \ldots x_{t-1}} P(x_1, \ldots x_{t-1}, \text{sun})
\]

\[
P(X_1 = \text{sun})P(X_2 = \text{sun}|X_1 = \text{sun})P(X_3 = \text{sun}|X_2 = \text{sun})P(X_4 = \text{sun}|X_3 = \text{sun})
\]

\[
P(X_1 = \text{sun})P(X_2 = \text{rain}|X_1 = \text{sun})P(X_3 = \text{sun}|X_2 = \text{rain})P(X_4 = \text{sun}|X_3 = \text{sun})
\]

\[
\vdots
\]

Mini-Forward Algorithm

- **Better way:** cached incremental belief updates
 - An instance of variable elimination!

\[
P(x_t) = \sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1})
\]

\[
P(x_1) = \text{known}
\]

Forward simulation
Example

- From initial observation of sun
 \[
 \begin{pmatrix}
 1.0 \\
 0.0
 \end{pmatrix}
 \begin{pmatrix}
 0.9 \\
 0.1
 \end{pmatrix}
 \begin{pmatrix}
 0.82 \\
 0.18
 \end{pmatrix}
 \rightarrow
 \begin{pmatrix}
 0.5 \\
 0.5
 \end{pmatrix}
 \]
 \[
 P(X_1) \quad P(X_2) \quad P(X_3) \quad P(X_\infty)
 \]

- From initial observation of rain
 \[
 \begin{pmatrix}
 0.0 \\
 1.0
 \end{pmatrix}
 \begin{pmatrix}
 0.1 \\
 0.9
 \end{pmatrix}
 \begin{pmatrix}
 0.18 \\
 0.82
 \end{pmatrix}
 \rightarrow
 \begin{pmatrix}
 0.5 \\
 0.5
 \end{pmatrix}
 \]
 \[
 P(X_1) \quad P(X_2) \quad P(X_3) \quad P(X_\infty)
 \]

Stationary Distributions

- If we simulate the chain long enough:
 - What happens?
 - Uncertainty accumulates
 - Eventually, we have no idea what the state is!

- Stationary distributions:
 - For most chains, the distribution we end up in is independent of the initial distribution
 - Called the stationary distribution of the chain
 - Usually, can only predict a short time out

[DEMO: Ghostbusters]
Web Link Analysis

- **PageRank over a web graph**
 - Each web page is a state
 - Initial distribution: uniform over pages
 - Transitions:
 - With prob. c, uniform jump to a random page (dotted lines)
 - With prob. 1-c, follow a random outlink (solid lines)

- **Stationary distribution**
 - Will spend more time on highly reachable pages
 - E.g. many ways to get to the Acrobat Reader download page!
 - Somewhat robust to link spam
 - Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors