Decision Networks

- **Action selection:**
 - Instantiate all evidence
 - Set action node(s) each possible way
 - Calculate posterior for all parents of utility node, given the evidence
 - Calculate expected utility for each action
 - Choose maximizing action

- **New node types:**
 - Chance nodes (just like BNs)
 - Actions (rectangles, cannot have parents, act as observed evidence)
 - Utility node (diamond, depends on action and chance nodes)

Example: Decision Networks

- Umbrella = leave
 \[\text{EU(leave)} = \sum_w P(w)U(\text{leave}, w) \]
 \[= 0.7 \cdot 100 + 0.3 \cdot 0 = 70 \]

- Umbrella = take
 \[\text{EU(take)} = \sum_w P(w)U(\text{take}, w) \]
 \[= 0.7 \cdot 20 + 0.3 \cdot 70 = 35 \]

Optimal decision = leave
\[\text{MEU(}a\text{)} = \max_a \text{EU(}a\text{)} = 70 \]

Decisions as Outcome Trees

- Almost exactly like expectimax / MDPs
- What’s changed?

Example: Decision Networks

- Umbrella = leave
 \[\text{EU(leave|bad)} = \sum_w P(w|\text{bad})U(\text{leave}, w) \]
 \[= 0.34 \cdot 100 + 0.66 \cdot 0 = 34 \]

- Umbrella = take
 \[\text{EU(take|bad)} = \sum_w P(w|\text{bad})U(\text{take}, w) \]
 \[= 0.34 \cdot 20 + 0.66 \cdot 70 = 53 \]

Optimal decision = take
\[\text{MEU(}F = \text{bad)} = \max_a \text{EU(}a\text{)} = 53 \]
Decisions as Outcome Trees

Decisions as Outcome Trees

Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network

Example: buying oil drilling rights
- Two blocks A and B, exactly one has oil, worth k
- You can drill in one location
- Prior probabilities 0.5 each, & mutually exclusive
- Drilling in either A or B has EU = k/2, MEU = k/2

Question: what’s the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say “oil in a” or “oil in b”; prob 0.5 each
 - If we know OilLoc, MEU is k (either way)
 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k/2
 - Fair price of information: k/2

VPI Example: Weather

MEU with no evidence
MEU(e) = max EU(a) = 70

MEU if forecast is bad
MEU(F = bad) = max EU(a|bad) = 53

MEU if forecast is good
MEU(F = good) = max EU(a|good) = 95

Forecast distribution

Forecast

0.59 ∙ (53) + 0.41 ∙ (95) = 77.8 – 70 = 7.8

VPI(E) = \left(\sum_{e'} P(e'|e)MEU(e', e') \right) – MEU(e)

VPI Properties

- Nonnegative
 \forall E, e: VPI(E|e) \geq 0

- Nonadditive — consider, e.g., obtaining E twice
 VPI(F_j, F_k|e) \neq VPI(F_j|e) + VPI(F_k|e)

- Order-independent
 VPI(E_j, E_k|e) = VPI(E_j|e) + VPI(E_k|e, E_j) = VPI(E_k|e) + VPI(E_j|e, E_k)

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn’t order either one. What’s the value of knowing which it is?

- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What’s the value of knowing which?

- You’re playing the lottery. The prize will be $0 or $100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?
POMDPs

- MDPs have:
 - States S
 - Actions A
 - Transition fn $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$

- POMDPs add:
 - Observations O
 - Observation function $P(o|s)$ (or $O(s,o)$)

- POMDPs are MDPs over belief states b (distributions over S)

- We'll be able to say more in a few lectures

Example: Ghostbusters

- In (static) Ghostbusters:
 - Belief state determined by evidence to date (e)
 - Tree really over evidence sets
 - Probabilistic reasoning needed to predict new evidence given past evidence

- Solving POMDPs
 - One way: use truncated expectimax to compute approximate value of actions
 - What if you only considered busting or one sense followed by a bust?
 - You get a VPI-based agent!

More Generally

- General solutions map belief functions to actions
 - Can divide regions of belief space (set of belief functions) into policy regions (gets complex quickly)
 - Can build approximate policies using discretization methods
 - Can factor belief functions in various ways

- Overall, POMDPs are very (actually PSPACE-) hard

- Most real problems are POMDPs, but we can rarely solve then in general!

Reasoning over Time

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring

- Need to introduce time into our models

- Basic approach: hidden Markov models (HMMs)

- More general: dynamic Bayes’ nets

Markov Models

- A Markov model is a chain-structured BN
 - Each node is identically distributed (stationary)
 - Value of X at a given time is called the state
 - As a BN:

 $$P(X_1) \quad P(X|X_{-1})$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial probs)
Conditional Independence

- Basic conditional independence:
 - Past and future independent of the present
 - Each time step only depends on the previous
 - This is called the (first order) Markov property

- Note that the chain is just a (growing) BN
 - We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Example: Markov Chain

- Weather:
 - States: $X = \{\text{rain, sun}\}$
 - Transitions:
 - Initial distribution: 1.0 sun
 - What’s the probability distribution after one step?
 - $P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain})$
 - $0.9 \cdot 1.0 + 0.1 \cdot 0.0 = 0.9$

Mini-Forward Algorithm

- Question: probability of being in state x at time t?
- Slow answer:
 - Enumerate all sequences of length t which end in s
 - Add up their probabilities
- Better way: cached incremental belief updates
 - An instance of variable elimination!

Example

- From initial observation of sun
 - $\begin{pmatrix} 1.0 \\ 0.0 \end{pmatrix}$
 - $\begin{pmatrix} 0.9 \\ 0.1 \end{pmatrix}$
 - $\begin{pmatrix} 0.82 \\ 0.18 \end{pmatrix}$
 - $\begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$

- From initial observation of rain
 - $\begin{pmatrix} 0.0 \\ 1.0 \end{pmatrix}$
 - $\begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}$
 - $\begin{pmatrix} 0.18 \\ 0.82 \end{pmatrix}$
 - $\begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$

Stationary Distributions

- If we simulate the chain long enough:
 - What happens?
 - Uncertainty accumulates
 - Eventually, we have no idea what the state is!
- Stationary distributions:
 - For most chains, the distribution we end up in is independent of the initial distribution
 - Called the stationary distribution of the chain
 - Usually, can only predict a short time out
Web Link Analysis

- PageRank over a web graph
 - Each web page is a state
 - Initial distribution: uniform over pages
 - Transitions:
 - With prob. c, uniform jump to a random page (dotted lines)
 - With prob. $1-c$, follow a random outlink (solid lines)

- Stationary distribution
 - Will spend more time on highly reachable pages
 - E.g. many ways to get to the Acrobat Reader download page!
 - Somewhat robust to link spam
 - Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors