Announcements

- Project 1: Search is due next week
- Written 1: Search and CSPs out soon
- Piazza: check it out if you haven’t

CS 188: Artificial Intelligence
Fall 2011

Lecture 4: Constraint Satisfaction
9/6/2011

Dan Klein – UC Berkeley
Multiple slides adapted from Stuart Russell or Andrew Moore

What is Search For?

- Models of the world: single agents, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a “black box”: arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables \(x_i \) with values from a domain \(D \) (sometimes \(D \) depends on \(i \))
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map-Coloring

- Variables: \(WA, NT, Q, NSW, V, SA, T \)
- Domain: \(D = \{ \text{red}, \text{green}, \text{blue} \} \)
- Constraints: adjacent regions must have different colors

\[WA \neq NT \]
\[(WA, NT) \in \{(\text{red}, \text{green}), (\text{red}, \text{blue}), (\text{green}, \text{red}), \ldots\}\]\n- Solutions are assignments satisfying all constraints, e.g.

\[\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green} \} \]

Example: N-Queens

- Formulation 1:
 - Variables: \(X_{ij} \)
 - Domains: \{0, 1\}
 - Constraints

\[\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \]
\[\forall i, j, k \ (X_{ij}, X_{ij+k}) \in \{(0, 0), (0, 1), (1, 0)\} \]
\[\forall i, j, k \ (X_{ij}, X_{i+j+k}) \subset \{(0, 0), (0, 1), (1, 0)\} \]
\[\sum_{i,j} X_{ij} = N \]
Example: N-Queens

- **Formulation 2:**
 - Variables: \(Q_k \)
 - Domains: \{1, 2, 3, \ldots, N\}
 - Constraints:
 - Implicit: \(\forall i, j \text{ non-threatening}(Q_i, Q_j) \)
 - Explicit: \((Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\} \)

Constraint Graphs

- **Binary CSP:** each constraint relates (at most) two variables
- **Binary constraint graph:** nodes are variables, arcs show constraints
- **General-purpose CSP algorithms** use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- **Variables (circles):**
 - \(F, T, U, W, R, O, X_1, X_2, X_3 \)
- **Domains:**
 - \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- **Constraints (boxes):**
 - \text{alldiff}(F, T, U, W, R, O)
 - \(O \neq R \rightarrow 10 \cdot X_1 \)

Example: Sudoku

- **Variables:**
 - Each (open) square
- **Domains:**
 - \{1, 2, \ldots, 9\}
- **Constraints:**
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
 - (or can have a bunch of pairwise inequality constraints)

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP
- Look at all intersections
- Adjacent intersections impose constraints on each other

Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size of means \(O(n^k) \) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable
- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)
Varieties of Constraints

- **Varieties of Constraints**
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 \[SA \neq \text{green} \]
 - Binary constraints involve pairs of variables:
 \[SA \neq WA \]
 - Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints
 - Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore those until we get to Bayes’ nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
 - … lots more!
- Many real-world problems involve real-valued variables…

Standard Search Formulation

- **Standard search formulation of CSPs (incremental)**
- Let’s start with the straightforward, dumb approach, then fix it
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {};
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- Simplest CSP ever: two bits, constrained to be equal

Search Methods

- **What would BFS do?**
- **What would DFS do?**
- **What problems does this approach have?**

Backtracking Search

- **Idea 1:** Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?

- **Idea 2:** Only allow legal assignments at each point
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
 - “Incremental goal test”

- Depth-first search for CSPs with these two improvements is called backtracking search (useless name, really)
- [DEMO]

- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for n \(\approx 25 \)
Backtracking Example

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Ordering: Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values
- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!
- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible

Filtering: Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:
- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation propagates from constraint to constraint
Consistency of An Arc

- An arc \(X \rightarrow Y \) is consistent iff for every \(x \) in the tail there is some \(y \) in the head which could be assigned without violating a constraint.

- Forward checking = Enforcing consistency of each arc pointing to the new assignment.

Arc Consistency of a CSP

- A simple form of propagation makes sure all arcs are consistent:
 - If \(X \) loses a value, neighbors of \(X \) need to be rechecked!
 - Arc consistency detects failure earlier than forward checking
 - What’s the downside of enforcing arc consistency?
 - Can be run as a preprocessor or after each assignment.

Function \(AC\) returns the CSP, possibly with reduced domains.

Local variables:
- \(X \): a queue of arcs, initially all the arcs in \(\mathcal{C} \)
- while \(\text{queue} \) is not empty do
 - \((X_i, X_j) \leftarrow \text{Remove-First}(\text{queue})\)
 - if \(\text{Remove-Inconsistent-Value}(X_i, X_j) \) then
 - for each \(X_k \) in \(\text{Neighbors}(X_i) \) do
 - add \((X_i, X_k)\) to \(\text{queue} \)

Function \(\text{Remove-Inconsistent-Value}(X_i, X_j) \) returns true if success

- Runtime: \(O(n^2d^2) \), can be reduced to \(O(n^2d) \)
- … but detecting all possible future problems is NP-hard – why?

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

Demo: Backtracking + AC