Multiple slides over the course adapted from either Stuart Russell or Andrew Moore.

Today

- Efficient Solution of CSPs
- Local Search

Reminder: CSPs

- CSPs:
 - Variables
 -Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a subset of the possible tuples)
- Implicit / Binary / N-ary

- Goals:
 - Usually: find any solution
 - Find all, find best, etc

Backtracking Search

```
function BACKTRACKING-Solution(var) returns solution/failure
  return NONTRIVIAL-BACKTRACKING([], var)

function NONTRIVIAL-BACKTRACKING(assignment, var) returns win/loss
  if assignment is complete then return assignment
  var = SELECT-UNASSIGNED-VARIABLE(assignment, var)
  for each value in ORACLE-DOMAIN(var, assignment, var) do
    if value is consistent with assignment then
      add (var = value) to assignment
      if success then return solution
      backtrack = NONTRIVIAL-BACKTRACKING(assignment, var)
      if result of failure then return result
      remove (var = value) from assignment
  return failure
```

Improving Backtracking

- General-purpose ideas give huge gains in speed
 - ... but it’s all still NP-hard

- Ordering (last class):
 - Which variable should be assigned next?
 - In what order should its values be tried?

- Filtering: Can we detect inevitable failure early?

- Structure: Can we exploit the problem structure?

Filtering: Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

[Demo: forward checking animation]
Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn’t provide early detection for all failures.
- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- Constraint propagation propagates from constraint to constraint

Consistency of An Arc

- An arc \(X \rightarrow Y \) is consistent iff for every \(x \) in the tail there is some \(y \) in the head which could be assigned without violating a constraint
- What happened?
- Forward checking = Enforcing consistency of each arc pointing to the new assignment

Arc Consistency of a CSP

- A simple form of propagation makes sure all arcs are consistent:
- If \(X \) loses a value, (incoming) neighbors of \(X \) need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What’s the downside of enforcing arc consistency?
- Can be run as a preprocessor or after each assignment

Establishing Arc Consistency

- Runtime: \(O(n^2 d^3) \), can be reduced to \(O(n^2 d^2) \)
- ... but detecting all possible future problems is NP-hard – why?

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each \(k \) nodes, any consistent assignment to \(k-1 \) can be extended to the \(k \)th node.
- Higher \(k \) more expensive to compute
- (You need to know the \(k=2 \) algorithm)
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, … 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
- Lots of middle ground between arc consistency and n-consistency! (e.g. path consistency)

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
 - Worst-case solution cost is $O(n^c(d^c))$, linear in n
 - E.g., n = 80, d = 2, c = 20
 - $2^{20} = 4$ billion years at 10 million nodes/sec

13

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering
- For i = n : 2, apply RemoveInconsistent(Parent(X_i), X_i)
- For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: $O(d^2)$ (why?)

14

Why does this work?
- Claim: After processing the right k nodes, given any satisfying assignment to the rest, the right k can be assigned (left to right) without backtracking
- Proof: Induction on position

15

Why doesn’t this algorithm work with loops?
- Note: we’ll see this basic idea again with Bayes’ nets

16

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^c)(n-c)d^c)$, very fast for small c

17

18
Tree Decompositions*

- Create a tree-structured graph of overlapping subproblems, each is a mega-variable
- Solve each subproblem to enforce local constraints
- Solve the CSP over subproblem mega-variables using our efficient tree-structured CSP algorithm

<table>
<thead>
<tr>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>SA</td>
<td>NT</td>
<td>WA</td>
</tr>
</tbody>
</table>

{(WA=r, SA=g, NT=b),
(WA=b, SA=r, NT=g),
…}

{(NT=r, SA=g, Q=b),
(NT=b, SA=g, Q=r),
…}

Agree: (M1, M2) ∈ {(WA=g, SA=g, NT=g), (NT=g, SA=g, Q=g), …}

Agree on shared vars

NT ≠ WA ≠ Q
SA ≠ NT ≠ WA

Agree on shared vars

NSW ≠ SA ≠ Q
V ≠ SA ≠ NSW

Agree on shared vars

Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned
- To apply to CSPs:
 - Start with some assignment with unsatisfied constraints
 - Operators reassign variable values
 - No fringe! Live on the edge.
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (4^4 = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
 - Backtracking = depth-first search with one legal variable assigned per node
 - Variable ordering and value selection heuristics help significantly
 - Forward checking prevents assignments that guarantee later failure
 - Constraint propagation (e.g., enforcing arc consistency) does additional work to constrain values and detect inconsistencies
 - Constraint graphs allow for analysis of problem structure
 - Tree-structured CSPs can be solved in linear time
 - Iterative min-conflicts is usually effective in practice