Expectimax Search Trees

- What if we don’t know what the result of an action will be? E.g.,
 - In solitaire, next card is unknown
 - In minesweeper, mine locations
 - In pacman, the ghosts act randomly

- Can do **expectimax search** to maximize average score
 - Max nodes as in minimax search
 - Chance nodes, like min nodes, except the outcome is uncertain
 - Calculate expected utilities
 - I.e. take weighted average (expectation) of values of children

- Later, we’ll learn how to formalize these underlying problems as **Markov Decision Processes** [DEMO: minVsExp]
Expectimax Example

Expectimax Pseudocode

```python
def value(s):
    if s is a max node return maxValue(s)
    if s is an exp node return expValue(s)
    if s is a terminal node return evaluation(s)

def maxValue(s):
    values = [value(s') for s' in successors(s)]
    return max(values)

def expValue(s):
    values = [value(s') for s' in successors(s)]
    weights = [probability(s, s') for s' in successors(s)]
    return expectation(values, weights)
```
Expectimax Pruning?

Depth-Limited Expectimax

Estimate of true expectimax value (which would require a lot of work to compute)
What Utilities to Use?

- For minimax, terminal function scale doesn’t matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this **insensitivity to monotonic transformations**

- For expectimax, we need **magnitudes** to be meaningful

![Diagram showing minimax tree with values 0, 40, 20, 30 and expectimax tree with values 0, 1600, 400, 900]

What Probabilities to Use?

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a node for every outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!

- For now, assume for any state we magically have a distribution to assign probabilities to opponent actions / environment outcomes

![Diagram showing probabilistic expectimax tree]

Having a probabilistic belief about an agent’s action does not mean that agent is flipping any coins!
Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes

Example: traffic on freeway?
- Random variable: T = whether there’s traffic
- Outcomes: T in {none, light, heavy}
- Distribution: $P(T=\text{none}) = 0.25$, $P(T=\text{light}) = 0.55$, $P(T=\text{heavy}) = 0.20$

Some laws of probability (more later):
- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:
- $P(T=\text{heavy}) = 0.20$, $P(T=\text{heavy} \mid \text{Hour=8am}) = 0.60$
- We’ll talk about methods for reasoning and updating probabilities later

Reminder: Expectations

- We can define function $f(X)$ of a random variable X

The expected value of a function is its average value, weighted by the probability distribution over inputs

Example: How long to get to the airport?
- Length of driving time as a function of traffic:
 - $L(\text{none}) = 20$, $L(\text{light}) = 30$, $L(\text{heavy}) = 60$
- What is my expected driving time?
 - Notation: $E[L(T)]$
 - Remember, $P(T) = \{\text{none}: 0.25, \text{light}: 0.5, \text{heavy}: 0.25\}$
 - $E[L(T)] = L(\text{none}) \cdot P(\text{none}) + L(\text{light}) \cdot P(\text{light}) + L(\text{heavy}) \cdot P(\text{heavy})$
 - $E[L(T)] = (20 \cdot 0.25) + (30 \cdot 0.5) + (60 \cdot 0.25) = 35$
Expectimax for Pacman

- Notice that we’ve gotten away from thinking that the ghosts are trying to minimize pacman’s score
- Instead, they are now a part of the environment
- Pacman has a belief (distribution) over how they will act
- Quiz: Can we see minimax as a special case of expectimax?
- Quiz: what would pacman’s computation look like if we assumed that the ghosts were doing 1-ply minimax and taking the result 80% of the time, otherwise moving randomly?
- If you take this further, you end up calculating belief distributions over your opponents’ belief distributions over your belief distributions, etc…
 - Can get unmanageable very quickly!

World Assumptions

Results from playing 5 games

<table>
<thead>
<tr>
<th></th>
<th>Minimizing Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax Pacman</td>
<td>Won 5/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: 483</td>
<td>Avg. Score: 493</td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td>Won 1/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: -303</td>
<td>Avg. Score: 503</td>
</tr>
</tbody>
</table>

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman
Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

```
ExpectiMinimax-Value(state):
    if state is a MAX node then
        return the highest ExpectiMinimax-Value of Successors(state)
    if state is a MIN node then
        return the lowest ExpectiMinimax-Value of Successors(state)
    if state is a chance node then
        return average of ExpectiMinimax-Value of Successors(state)
```

Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth $2 = 20 \times (21 \times 20) = 1.2 \times 10^8$

- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier…

- TDGammon uses depth-2 search + very good evaluation function + reinforcement learning:
 world-champion level play

- 1st AI world champion in any game!
Multi-Agent Utilities

- Similar to minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own utility
 - Can give rise to cooperation and competition dynamically...

Maximum Expected Utility

- Why should we average utilities? Why not minimax?

- Principle of maximum expected utility:
 - A rational agent should choose the action which maximizes its expected utility, given its knowledge

- Questions:
 - Where do utilities come from?
 - How do we know such utilities even exist?
 - Why are we taking expectations of utilities (not, e.g. minimax)?
 - What if our behavior can’t be described by utilities?
Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent’s preferences.

- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent’s goals
 - Theorem: any “rational” preferences can be summarized as a utility function.

- We hard-wire utilities and let behaviors emerge
 - Why don’t we let agents pick utilities?
 - Why don’t we prescribe behaviors?

Utilities: Uncertain Outcomes

Getting ice cream

- Get Double
- Get Single
- Oops
- Whew

- Whew
Preferences

- An agent must have preferences among:
 - Prizes: A, B, etc.
 - Lotteries: situations with uncertain prizes

 \[L = [p, A; (1-p), B] \]

- Notation:
 - $A \succ B$ A preferred over B
 - $A \sim B$ indifference between A and B
 - $A \succeq B$ B not preferred over A

Rational Preferences

- We want some constraints on preferences before we call them rational

 \[(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)\]

- For example: an agent with intransitive preferences can be induced to give away all of its money
 - If $B > C$, then an agent with C would pay (say) 1 cent to get B
 - If $A > B$, then an agent with B would pay (say) 1 cent to get A
 - If $C > A$, then an agent with A would pay (say) 1 cent to get C
Rational Preferences

- Preferences of a rational agent must obey constraints.
 - The axioms of rationality:
 - Orderability
 \[(A \succ B) \lor (B \succ A) \lor (A \sim B)\]
 - Transitivity
 \[(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)\]
 - Continuity
 \[A \succ B \succ C \Rightarrow \exists p [p, A; 1 - p, C] \sim B\]
 - Substitutability
 \[A \sim B \Rightarrow [p, A; 1 - p, C] \sim [p, B; 1 - p, C]\]
 - Monotonicity
 \[A \succ B \Rightarrow (p \geq q \Leftrightarrow [p, A; 1 - p, B] \succeq [q, A; 1 - q, B])\]

- Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
 - [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function \(U\) such that:
 \[
 U(A) \succeq U(B) \Leftrightarrow A \succeq B
 \]
 \[
 U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)
 \]

- Maximum expected likelihood (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner
Utility Scales

- **Normalized utilities**: $u_+ = 1.0$, $u_- = 0.0$
- **Micromorts**: one-millionth chance of death, useful for paying to reduce product risks, etc.
- **QALYs**: quality-adjusted life years, useful for medical decisions involving substantial risk
- **Note**: behavior is invariant under positive linear transformation
 \[U'(x) = k_1 U(x) + k_2 \text{ where } k_1 > 0 \]
- **With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes**

Human Utilities

- **Utilities map states to real numbers. Which numbers?**
- **Standard approach to assessment of human utilities:**
 - Compare a state A to a standard lottery L_p between
 - “best possible prize” u_+ with probability p
 - “worst possible catastrophe” u_- with probability $1-p$
 - Adjust lottery probability p until $A \sim L_p$
 - Resulting p is a utility in $[0,1]$

Pay 30 \sim continue as before

12
Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt).
- Given a lottery \(L = [p, X; (1-p), Y] \)
 - The expected monetary value \(EMV(L) \) is \(p \cdot X + (1-p) \cdot Y \)
 - \(U(L) = p \cdot U(X) + (1-p) \cdot U(Y) \)
 - Typically, \(U(L) < U(EMV(L)) \): why?
 - In this sense, people are risk-averse
 - When deep in debt, we are risk-prone

- Utility curve: for what probability \(p \) am I indifferent between:
 - Some sure outcome \(x \)
 - A lottery \([p,M; (1-p),0]\), \(M \) large

Example: Insurance

- Consider the lottery \([0.5,1000; 0.5,0]\)
 - What is its expected monetary value? \(\$500 \)
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - \$400 for most people
 - Difference of \$100 is the insurance premium
 - There’s an insurance industry because people will pay to reduce their risk
 - If everyone were risk-neutral, no insurance needed!
Example: Human Rationality?

- Famous example of Allais (1953)
 - A: [0.8,$4k; 0.2,$0]
 - B: [1.0,$3k; 0.0,$0]
 - C: [0.2,$4k; 0.8,$0]
 - D: [0.25,$3k; 0.75,$0]

- Most people prefer B > A, C > D
- But if U($0) = 0, then
 - B > A ⇒ U($3k) > 0.8 U($4k)
 - C > D ⇒ 0.8 U($4k) > U($3k)