Expectimax Search Trees

- What if we don’t know what the result of an action will be? E.g.
 - In solitaire, next card is unknown
 - In minesweeper, mine locations
 - In pacman, the ghosts act randomly
- Can do expectimax search to maximize average score
 - Max nodes as in minimax search
 - Chance nodes, like min nodes, except the outcome is uncertain
 - Calculate expected utilities
 - I.e. take weighted average (expectation) of values of children
- Later, we’ll learn how to formalize these underlying problems as Markov Decision Processes

Expectimax Example

Expectimax Pseudocode

```python
def value(s):
    if s is a max node return maxValue(s)
    if s is an exp node return expValue(s)
    if s is a terminal node return evaluation(s)

def maxValue(s):
    values = [value(s') for s' in successors(s)]
    return max(values)

def expValue(s):
    values = [value(s') for s' in successors(s)]
    weights = [probability(s, s') for s' in successors(s)]
    return expectation(values, weights)
```

Expectimax Pruning?

Depth-Limited Expectimax

Estimate of true expectimax value (which would require a lot of work to compute)
What Utilities to Use?
- For minimax, terminal function scale doesn’t matter
- We just want better states to have higher evaluations (get the ordering right)
- We call this insensitivity to monotonic transformations
- For expectimax, we need magnitudes to be meaningful

What Probabilities to Use?
- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a node for every outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume for any state we magically have a distribution to assign probabilities to outcomes / environment outcomes

Reminder: Probabilities
- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: traffic on freeway?
 - Random variable: T = whether there’s traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20
- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
 - We’ll talk about methods for reasoning and updating probabilities later

Reminder: Expectations
- We can define function f(X) of a random variable X
- The expected value of a function is its average value, weighted by the probability distribution over inputs
- Example: How long to get to the airport?
 - Length of driving time as a function of traffic:
 - L(none) = 20, L(light) = 30, L(heavy) = 60
 - What is my expected driving time?
 - Notation: E[L(T)]
 - Remembar, P(T) = {none: 0.25, light: 0.5, heavy: 0.25}
 - E[L(T)] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy)
 - E[L(T)] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35

Expectimax for Pacman
- Notice that we’ve gotten away from thinking that the ghosts are trying to minimize pacman’s score
- Instead, they are now a part of the environment
- Pacman has a belief (distribution) over how they will act
- Quiz: Can we see minimax as a special case of expectimax?
- Quiz: what would pacman’s computation look like if we assumed that the ghosts were doing 1-ply minimax and taking the result 80% of the time, otherwise moving randomly?
- If you take this further, you end up calculating belief distributions over your opponents’ belief distributions over your belief distributions, etc...
 - Can get unmanageable very quickly!

World Assumptions

<table>
<thead>
<tr>
<th></th>
<th>Minimizing Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax</td>
<td>Avg. Score: 483</td>
<td>Avg. Score: 493</td>
</tr>
</tbody>
</table>

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman
Mixed Layer Types
- E.g. Backgammon
- Expectiminimax
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

Expectiminimax-Value(state):
 If state is a MAX node then
 return the highest Expectiminimax-Value of Successors(state)
 If state is a MIN node then
 return the lowest Expectiminimax-Value of Successors(state)
 If state is a chance node then
 return average of Expectiminimax-Value of Successors(state)

Stochastic Two-Player
- Dice rolls increase b: 21 possible rolls with 2 dice
- Backgammon = 20 legal moves
- Depth 2 = $20 \times (21 \times 20) = 1.2 \times 10^9$
- As depth increases, probability of reaching a given search node shrinks
- So usefulness of search is diminished
- So limiting depth is less damaging
- But pruning is trickier...
- TDGammon uses depth-2 search +
 very good evaluation function +
 reinforcement learning:
 world-champion level play
- 1st AI world champion in any game!

Multi-Agent Utilities
- Similar to minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own utility
 - Can give rise to cooperation and competition dynamically...

Maximum Expected Utility
- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility:
 - A rational agent should choose the action which maximizes its expected utility, given its knowledge
- Questions:
 - Where do utilities come from?
 - How do we know such utilities even exist?
 - Why are we taking expectations of utilities (not, e.g. minimax)?
 - What if our behavior can’t be described by utilities?

Utilities
- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent’s preferences
- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent’s goals
 - Theorem: any “rational” preferences can be summarized as a utility function
- We hard-wire utilities and let behaviors emerge
 - Why don’t we let agents pick utilities?
 - Why don’t we prescribe behaviors?

Utilities: Uncertain Outcomes
Getting ice cream
- Get Double
- Get Single
 - Get Double
 - Get Single
Preferences

- An agent must have preferences among:
 - Prizes: A, B, etc.
 - Lotteries: situations with uncertain prizes
 \[L = [p, A; (1-p), B] \]

- Notation:
 - \(A \succ B \) \(\) A preferred over B
 - \(A \sim B \) \(\) indifference between A and B
 - \(A \succeq B \) \(\) B not preferred over A

Rational Preferences

- We want some constraints on preferences before we call them rational
 \[(A > B) \land (B > C) \Rightarrow (A > C) \]

- For example: an agent with intransitive preferences can be induced to give away all of its money
 - If \(B > C \), then an agent with \(C \) would pay (say) 1 cent to get B
 - If \(A > B \), then an agent with \(B \) would pay (say) 1 cent to get A
 - If \(C > A \), then an agent with \(A \) would pay (say) 1 cent to get C

Rational Preferences

- Preferences of a rational agent must obey constraints.
 - The axioms of rationality:
 - Orderability:
 \((A > B) \lor (B > A) \lor (A \sim B) \)
 - Transitivity:
 \((A > B) \land (B > C) \Rightarrow (A > C) \)
 - Continuity:
 \(A > B > C \Rightarrow \exists p \ [p, A; 1-p, C] \sim B \)
 - Substitutability:
 \(A > B \Rightarrow \exists [p, A; 1-p, B] \sim [p, A; 1-p, C] \)
 - Monotonicity:
 \(A > B \Rightarrow A \geq B \Rightarrow \exists [p, A; 1-p, B] \geq [p, A; 1-p, C] \)
 - Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
 - [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function \(U \) such that:
 \[U(A) \geq U(B) \iff A \succeq B \]
 \[U([p_1, S_1; \cdots ; p_n, S_n]) = \sum_i p_i U(S_i) \]
 - Maximum expected likelihood (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner

Utility Scales

- Normalized utilities: \(u_+ = 1.0 \), \(u_- = 0.0 \)
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation
 \[U'(x) = k_1 U(x) + k_2 \quad \text{where} \quad k_1 > 0 \]

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
 - Compare a state \(A \) to a standard lottery \(L_p \) between
 - “best possible prize” \(u_+ \), with probability \(p \)
 - “worst possible catastrophe” \(u_- \), with probability \(1-p \)
 - Adjust lottery probability \(p \) until \(A \sim L_p \)
 - Resulting \(p \) is a utility in \([0,1]\)

- Pay $30 \sim L$
Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt).

- Given a lottery \(L = [p, $X; (1-p), $Y] \)
 - The expected monetary value \(EMV(L) = p*X + (1-p)*Y \)
 - \(U(L) = p*U($X) + (1-p)*U($Y) \)
 - Typically, \(U(L) < U(EMV(L)) \): why?
 - In this sense, people are risk-averse
 - When deep in debt, we are risk-prone

- Utility curve: for what probability \(p \) am I indifferent between:
 - Some sure outcome \(x \)
 - A lottery \([p, $M; (1-p), $0]\), \(M \) large

Example: Insurance

- Consider the lottery \([0.5,$1000; 0.5,$0]\)
 - What is its expected monetary value? \(($500) \)
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - $400 for most people
 - Difference of $100 is the insurance premium
 - There’s an insurance industry because people will pay to reduce their risk
 - If everyone were risk-neutral, no insurance needed!

Example: Human Rationality?

- Famous example of Allais (1953)
 - \(A: [0.8,$4k; 0.2,$0] \)
 - \(B: [1.0,$3k; 0.0,$0] \)
 - \(C: [0.2,$4k; 0.8,$0] \)
 - \(D: [0.25,$3k; 0.75,$0] \)

- Most people prefer \(B > A \), \(C > D \)

- But if \(U($0) = 0 \), then
 - \(B > A \Rightarrow U($3k) > 0.8 U($4k) \)
 - \(C > D \Rightarrow 0.8 U($4k) > U($3k) \)