
CS188 Fall 2018 Section 7: Bayes Nets and Decision Nets

1 Bayes’ Nets: Inference
Assume we are given the following Bayes’ net, and would like to perform inference to obtain P (B,D | E =
e,H = h).

A

B C D

E F

G

H

1. What is the number of rows in the largest factor generated by inference by enumeration, for this query
P (B,D | E = e,H = h)? Assume all the variables are binary.

# 22 # 23  26 # 28

# None of the above.

Since the inference by enumeration first joins all the factors in the Bayes’ net, that factor will contain six
(unobserved) variables. The question assumes all variables are binary, so the answer is 26.

2. Mark all of the following variable elimination orderings that are optimal for calculating the answer for the
query P (B,D | E = e,H = h). Optimality is measured by the sum of the sizes of the factors that are
generated. Assume all the variables are binary.

2 C,A, F,G 2 F,G,C,A 2 A,C, F,G � G,F,C,A

2 None of the above.

The sum of the sizes of factors that are generated for the variable elimination ordering G, F, C, A is
21 + 21 + 22 + 22 rows, which is smaller than for any of the other variable elimination orderings. The
ordering F, G, C, A is close but the sum of the sizes of factors is slightly bigger, with 22 + 21 + 22 + 22

rows.

3. Suppose we decide to perform variable elimination to calculate the query P (B,D | E = e,H = h), and
choose to eliminate F first.

(a) When F is eliminated, what intermediate factor is generated and how is it calculated? Make sure it
is clear which variable(s) come before the conditioning bar and which variable(s) come after.

f1( G | C, e ) =
∑

f P (f | C)P (G|f, e)

This follows from the first step of variable elimination, which is to join all factors containing F , and
then marginalize over F to obtain the intermediate factor f1.
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(b) Now consider the set of distributions that can be represented by the remaining factors after F is
eliminated. Draw the minimal number of directed edges on the following Bayes’ Net structure, so
that it can represent any distribution in this set. If no additional directed edges are needed, please
fill in that option below.

A

B C D

E

G

H

# No additional directed edges needed

An additional edge from C to G is necessary, because the intermediate factor is of the form f1(G|C).
Without this edge from C to G, the Bayes’ net would not be able to express the dependence of G on
C. (Note that adding an edge from G to C is not allowed, since that would introduce a cycle.)

2 Sampling and Dynamic Bayes Nets
We would like to analyze people’s ice cream eating habits on sunny and rainy days Suppose we consider the
weather, along with a person’s ice-cream eating, over the span of two days. We’ll have four random variables:
W1 and W2 stand for the weather on days 1 and 2, which can either be rainy R or sunny S, and the variables I1
and I2 represent whether or not the person ate ice cream on days 1 and 2, and take values T (for truly eating
ice cream) or F. We can model this as the following Bayes Net with these probabilities.

W1 P (W1)
S 0.6
R 0.4

W1 W2 P (W2|W1)
S S 0.7
S R 0.3
R S 0.5
R R 0.5

W I P (I|W )
S T 0.9
S F 0.1
R T 0.2
R F 0.8

Suppose we produce the following samples of (W1, I1,W2, I2) from the ice-cream model:

����R, F, R, F ����R, F, R, F ����S, F, S, T ����S, T, S, T S, T, R, F

����R, F, R, T ����S, T, S, T ����S, T, S, T S, T, R, F ����R, F, S, T

1. What is P̂ (W2 = R), the probability that sampling assigns to the event W2 = R?
Number of samples in which W2 = R: 5. Total number of samples: 10. Answer 5/10 = 0.5.

2. Cross off samples above which are rejected by rejection sampling if we’re computing P (W2|I1 = T, I2 = F).

Rejection sampling seems to be wasting a lot of effort, so we decide to switch to likelihood weighting.
Assume we generate the following six samples given the evidence I1 = T and I2 = F:

(W1, I1,W2, I2) =
{

(S, T, R, F), (R, T, R, F), (S, T, R, F), (S, T, S, F), (S, T, S, F), (R, T, S, F)
}
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3. What is the weight of the first sample (S, T, R, F) above?

The weight given to a sample in likelihood weighting is∏
Evidence variables e

Pr(e|Parents(e)).

In this case, the evidence is I1 = T, I2 = F. The weight of the first sample is therefore

w = Pr(I1 = T|W1 = S) · Pr(I2 = F|W2 = R) = 0.9 · 0.8 = 0.72

4. Use likelihood weighting to estimate P (W2|I1 = T, I2 = F).
The sample weights are given by

(W1, I1,W2, I2) w
S, T, R, F 0.72
R, T, R, F 0.16
S, T, R, F 0.72

(W1, I1,W2, I2) w
S, T, S, F 0.09
S, T, S, F 0.09
R, T, S, F 0.02

To compute the probabilities, we thus normalize the weights and find

P̂ (W2 = R|I1 = T, I2 = F) =
0.72 + 0.16 + 0.72

0.72 + 0.16 + 0.72 + 0.09 + 0.09 + 0.02
= 0.889

P̂ (W2 = S|I1 = T, I2 = F) = 1− 0.889 = 0.111.
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3 Decision Networks and VPI
A used car buyer can decide to carry out various tests with various costs (e.g., kick the tires, take the car to a
qualified mechanic) and then, depending on the outcome of the tests, decide which car to buy. We will assume
that the buyer is deciding whether to buy car c and that there is time to carry out at most one test which
costs $50 and which can help to figure out the quality of the car. A car can be in good shape (of good quality
Q = +q) or in bad shape (of bad quality Q=¬q), and the test might help to indicate what shape the car is in.
There are only two outcomes for the test T: pass (T=pass) or fail (T=fail). Car c costs $1,500, and its market
value is $2,000 if it is in good shape; if not, $700 in repairs will be needed to make it in good shape. The buyers
estimate is that c has 70% chance of being in good shape. The Decision Network is shown below.

Q
T

Buy Car?

U

1. Calculate the expected net gain from buying car c, given no test.

EU(buy) = P (Q = +q) · U(+q,buy) + P (Q = ¬q) · U(¬q, buy)

= .7 · 500 + 0.3 · −200 = 290

2. Tests can be described by the probability that the car will pass or fail the test given that the car is in
good or bad shape. We have the following information:

P (T = pass|Q = +q) = 0.9

P (T = pass|Q = ¬q) = 0.2

Calculate the probability that the car will pass (or fail) its test, and then the probability that it is in good
(or bad) shape given each possible test outcome.

P (T = pass) =
∑
q

P (T = pass, Q = q)

= P (T = pass|Q = +q)P (Q = +q) + P (T = pass|Q = ¬q)P (Q = ¬q)
= 0.69

P (T = fail) = 0.31

P (Q = +q|T = pass) =
P (T = pass|Q = +q)P (Q = +q)

P (T = pass)

=
0.9 · 0.7

0.69
=

21

23
≈ 0.91

P (Q = +q|T = fail) =
P (T = fail|Q = +q)P (Q = +q)

P (T = fail)

=
0.1 · 0.7

0.31
=

7

31
≈ 0.22

3. Calculate the optimal decisions given either a pass or a fail, and their expected utilities.

EU(buy|T = pass) = P (Q = +q|T = pass)U(+q,buy) + P (Q = ¬q|T = pass)U(¬q,buy)

≈ 0.91 · 500 + 0.09 · (−200) ≈ 437

EU(buy|T = fail) = P (Q = +q|T = fail)U(+q,buy) + P (Q = ¬q|T = fail)U(¬q,buy)

≈ 0.22 · 500 + 0.78 · (−200) = −46

EU(¬buy|T = pass) = 0

EU(¬buy|T = fail) = 0
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Therefore: MEU(T = pass) = 437 (with buy) and MEU(T = fail) = 0 (using ¬buy)

4. Calculate the value of (perfect) information of the test. Should the buyer pay for a test?

V PI(T ) = (
∑
t

P (T = t)MEU(T = t))−MEU(φ)

= 0.69 · 437 + 0.31 · 0− 290 ≈ 11.53

You shouldn’t pay for it, since the cost is $50.
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