
CS188 Fall 2018 Section 8: HMMs + Particle Filtering

1 HMMs
Consider the following Hidden Markov Model.

W1 P (W1)
0 0.3
1 0.7

Wt Wt+1 P (Wt+1|Wt)
0 0 0.4
0 1 0.6
1 0 0.8
1 1 0.2

Wt Ot P (Ot|Wt)
0 A 0.9
0 B 0.1
1 A 0.5
1 B 0.5

Suppose that we observe O1 = A and O2 = B.
Using the forward algorithm, compute the probability distribution P (W2|O1 = A,O2 = B) one step at a time.

1. Compute P (W1, O1 = A).

P (W1, O1 = A) = P (W1)P (O1 = A|W1)
P (W1 = 0, O1 = A) = (0.3)(0.9) = 0.27
P (W1 = 1, O1 = A) = (0.7)(0.5) = 0.35

2. Using the previous calculation, compute P (W2, O1 = A).

P (W2, O1 = A) =
∑

x1
P (x1, O1 = A)P (W2|x1)

P (W2 = 0, O1 = A) = (0.27)(0.4) + (0.35)(0.8) = 0.388
P (W2 = 1, O1 = A) = (0.27)(0.6) + (0.35)(0.2) = 0.232

3. Using the previous calculation, compute P (W2, O1 = A,O2 = B).

P (W2, O1 = A,O2 = B) = P (W2, O1 = A)P (O2 = B|W2)
P (W2 = 0, O1 = A,O2 = B) = (0.388)(0.1) = 0.0388
P (W2 = 1, O1 = A,O2 = B) = (0.232)(0.5) = 0.116

4. Finally, compute P (W2|O1 = A,O2 = B).

Renormalizing the distribution above, we have
P (W2 = 0|O1 = A,O2 = B) = 0.0388/(0.0388 + 0.116) ≈ 0.25
P (W2 = 1|O1 = A,O2 = B) = 0.116/(0.0388 + 0.116) ≈ 0.75
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2 Particle Filtering
Let’s use Particle Filtering to estimate the distribution of P (W2|O1 = A,O2 = B). Here’s the HMM again:

W1 P (W1)
0 0.3
1 0.7

Wt Wt+1 P (Wt+1|Wt)
0 0 0.4
0 1 0.6
1 0 0.8
1 1 0.2

Wt Ot P (Ot|Wt)
0 A 0.9
0 B 0.1
1 A 0.5
1 B 0.5

We start with two particles representing our distribution for W1.
P1 : W1 = 0
P2 : W1 = 1
Use the following random numbers to run particle filtering:

[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]

1. Observe: Compute the weight of the two particles after evidence O1 = A.

w(P1) = P (Ot = A|Wt = 0) = 0.9
w(P2) = P (Ot = A|Wt = 1) = 0.5

2. Resample: Using the random numbers, resample P1 and P2 based on the weights.

We now sample from the weighted distribution we found above. After normalizing the weights, we find
that P1 maps to range [0, 0.643), and P2 maps to range [0.643, 1). Using the first two random samples,
we find:
P1 = sample(weights, 0.22) = 0
P2 = sample(weights, 0.05) = 0

3. Elapse Time: Now let’s compute the elapse time particle update. Sample P1 and P2 from applying the
time update.

P1 = sample(P (Wt+1|Wt = 0), 0.33) = 0
P2 = sample(P (Wt+1|Wt = 0), 0.20) = 0

4. Observe: Compute the weight of the two particles after evidence O2 = B.

w(P1) = P (Ot = B|Wt = 0) = 0.1
w(P2) = P (Ot = B|Wt = 0) = 0.1

5. Resample: Using the random numbers, resample P1 and P2 based on the weights.

Because both of our particles have X = 0, resampling will still leave us with two particles with X = 0.
P1 = 0
P2 = 0
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6. What is our estimated distribution for P (W2|O1 = A,O2 = B)?

P (W2 = 0|O1 = A,O2 = B) = 2/2 = 1
P (W2 = 1|O1 = A,O2 = B) = 0/2 = 0

3 HMMs (Optional)
Consider a process where there are transitions among a finite set of states s1, · · · , sk over time steps i = 1, · · · , N .
Let the random variables X1, · · · , XN represent the state of the system at each time step and be generated as
follows:

• Sample the initial state s from an initial distribution P1(X1), and set i = 1

• Repeat the following:

1. Sample a duration d from a duration distribution PD over the integers {1, · · · ,M}, where M is the
maximum duration.

2. Remain in the current state s for the next d time steps, i.e., set

xi = xi+1 = · · · = xi+d−1 = s (1)

3. Sample a successor state s′ from a transition distribution PT (Xt|Xt−1 = s) over the other states
s′ 6= s (so there are no self transitions)

4. Assign i = i + d and s = s′.

This process continues indefinitely, but we only observe the first N time steps.

(a) Assuming that all three states s1, s2, s3 are different, what is the probability of the sample sequence
s1, s1, s2, s2, s2, s3, s3? Write an algebraic expression. Assume M ≥ 3.

p1(s1)pD(2)pT (s2|s1)pD(3)p(s3|s2)(1− pD(1)) (2)

At each time step i we observe a noisy version of the state Xi that we denote Yi and is produced via a conditional
distribution PE(Yi|Xi).

(b) Only in this subquestion assume that N > M . Let X1, · · · , XN and Y1, · · · , YN random variables defined
as above. What is the maximum index i ≤ N − 1 so that X1 |= XN |Xi, Xi+1, · · · , XN−1 is guaranteed?
i = N −M
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(c) Only in this subquestion, assume the max duration M = 2, and PD uniform over {1, 2} and each xi

is in an alphabet {a, b}. For (X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5) draw a Bayes Net over these 10 random
variables with the property that removing any of the edges would yield a Bayes net inconsistent with the given
distribution.

X1

X2

X3

X4

X5

Y1 Y2 Y3 Y4 Y5

(d) In this part we will explore how to write the described process as an HMM with an extended state space.
Write the states z = (s, t) where s is a state of the original system and t represents the time elapsed in that state.
For example, the state sequence s1, s1, s1, s2, s3, s3 would be represented as (s1, 1), (s1, 2), (s1, 3), (s2, 1), (s3, 1), (s3, 2).

Answer all of the following in terms of the parameters P1(X1), PD(d), PT (Xj+1|Xj), PE(Yi|Xi), k (total number
of possible states), N and M (max duration).

• What is P (Z1)?

P (x1, t) =

{
P1(x1) if t = 1

0 o.w.
(3)

• What is P (Zi+1|Zi)? Hint: You will need to break this into cases where the transition function will behave
differently.

P (Xi+1, ti+1|Xi, ti) =


PD(d ≥ ti + 1|d ≥ ti) when Xi+1 = Xi and ti+1 = ti + 1 and ti+1 ≤M

PT (Xi+1|Xi)PD(d = ti|d ≥ ti) when Xi+1 6= Xi and ti+1 = 1

0 o.w.

Where PD(d ≥ ti + 1|d ≥ ti) = PD(d ≥ ti + 1)/PD(d ≥ ti).

Being in Xi, ti, we know that d was drawn d ≥ ti. Conditioning on this fact, we have two choices, if d > ti then
the next state is Xi+1 = Xi, and if d = ti then Xi+1 6= Xi drawn from the transition distribution and ti+1 = 1.
(4)

• What is P (Yi|Zi)?
p(Yi|Xi, ti) = PE(Yi|Xi)
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