CS188 Fall 2018 Section 8: HMMs + Particle Filtering

1 HMMs

Consider the following Hidden Markov Model.

@ @ Wt Wt-‘rl P(Wt+1|Wt) Wt Ot P(Ot|Wt)
W, | P(Wh) 0] 0 0.4 0 | A 0.9
0] 03 0 1 0.6 0| B 0.1
1 0.7 1 0 0.8 1| A 0.5
e e 1 1 0.2 1 | B 0.5

Suppose that we observe O; = A and Oy = B.
Using the forward algorithm, compute the probability distribution P(W3|O; = A, Oy = B) one step at a time.

1. Compute P(Wy,0; = A).
P(W7,01 = A) = P(W7)P(O1 = A|Wh)

P(W, =0,0, = A) = (0.3)(0.9) = 0.27
P(Wy =1,0, = A) = (0.7)(0.5) = 0.35

2. Using the previous calculation, compute P(Ws, 01 = A).

P(WQ,Ol = A) = Zwl P(Ltl,Ol = A)P(W2|I1)
P(W3 =0,0, = A) = (0.27)(0.4) + (0.35)(0.8) = 0.388
P(Wy=1,0, = A) = (0.27)(0.6) + (0.35)(0.2) = 0.232

3. Using the previous calculation, compute P(W3, 01 = A,O5 = B).

P(Wy,01 = A,0y = B) = P(W5,0, = A)P(Oy = B|W>)
P(Wy=0,0, = A, 05 = B) = (0.388)(0.1) = 0.0388
P(Wy=1,0, = A,0, = B) = (0.232)(0.5) = 0.116

4. Finally, compute P(W2|O; = A, Oy = B).

Renormalizing the distribution above, we have
P(Wy =0|01 = A,02 = B) = 0.0388/(0.0388 + 0.116) ~ 0.25
P(Wy =1|01 = A,05 = B) = 0.116/(0.0388 + 0.116) ~ 0.75



2 Particle Filtering

Let’s use Particle Filtering to estimate the distribution of P(W2|01 = A, O2 = B). Here’s the HMM again:

@ @ Wi | Wegr | P(Weg1|[We) W | O¢ | P(O:Wy)
W1 | P(Wr) 0 0 0.4 0| A 0.9
0 0.3 0 1 0.6 0| B 0.1
1 0.7 1 0 0.8 1| A 0.5
e e 1 1 0.2 1 | B 0.5

We start with two particles representing our distribution for Wj.
Pl : W1 =0

P2 : W1 =1

Use the following random numbers to run particle filtering:

0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]

1. Observe: Compute the weight of the two particles after evidence Oy = A.

w(P) = P(Oy = A|W, =0)=0.9
w(Py) = P(Oy = A|W, =1) =05

2. Resample: Using the random numbers, resample P; and P, based on the weights.

We now sample from the weighted distribution we found above. After normalizing the weights, we find
that P, maps to range [0, 0.643), and P, maps to range [0.643, 1). Using the first two random samples,
we find:

Py = sample(weights,0.22) = 0

Py = sample(weights,0.05) =0

3. Elapse Time: Now let’s compute the elapse time particle update. Sample P; and P, from applying the
time update.
Py = sample(P(Wy1|W; =0),0.33) =0
Py = sample(P(Wy1|W; =0),0.20) =0
4. Observe: Compute the weight of the two particles after evidence Oy = B.
w(Py) = P(O; = B]W; =0) =0.1
w(Py) = P(Oy = B|W; =0) =0.1
5. Resample: Using the random numbers, resample P; and P, based on the weights.
Because both of our particles have X = 0, resampling will still leave us with two particles with X = 0.

P =0
P2:0



6. What is our estimated distribution for P(W5|0Oy = A, 02 = B)?

P(W2=O|01=A,02:B):2/2:1
P(Wy=1|01 =A,0,=B)=0/2=0

3 HMMs (Optiona])

Consider a process where there are transitions among a finite set of states s1,--- , sx over time steps¢ =1,--- | N.
Let the random variables X1, -- , X represent the state of the system at each time step and be generated as
follows:

e Sample the initial state s from an initial distribution P;(X7), and set ¢ = 1
e Repeat the following:

1. Sample a duration d from a duration distribution Pp over the integers {1,---, M}, where M is the
maximum duration.

2. Remain in the current state s for the next d time steps, i.e., set
Ty =1Tjy1 =" =Tj4d-1 =S5 (1)

3. Sample a successor state s’ from a transition distribution Pr(X:|X;—1 = s) over the other states
s' # s (so there are no self transitions)

4. Assigni=1+d and s = 5.

This process continues indefinitely, but we only observe the first N time steps.

(a) Assuming that all three states s1,s2,s3 are different, what is the probability of the sample sequence
$1, 81, S2, S2, 82, 83, S37 Write an algebraic expression. Assume M > 3.

p1(s1)pp(2)pr(s2|51)pp(3)p(ssls2)(1 — pp(1)) (2)

At each time step 7 we observe a noisy version of the state X; that we denote Y; and is produced via a conditional
distribution Pg(Y;|X;).

(b) Only in this subquestion assume that N > M. Let X1, -+, Xy and Y7, -+, Yy random variables defined
as above. What is the maximum index ¢ < N — 1 so that X; 1l Xn|X;, Xiq1,--- , Xn—1 is guaranteed?
1=N-M



(c¢) Only in this subquestion, assume the max duration M = 2, and Pp uniform over {1,2} and each z;
is in an alphabet {a,b}. For (X1, Xa, X3, X4, X5,Y7,Ys,Y5,Yy,Y5) draw a Bayes Net over these 10 random
variables with the property that removing any of the edges would yield a Bayes net inconsistent with the given
distribution.

i () .

X2 X4

Y1 Y3 @ Y5

(d) In this part we will explore how to write the described process as an HMM with an extended state space.
Write the states z = (s, t) where s is a state of the original system and ¢ represents the time elapsed in that state.
For example, the state sequence 1, s1, $1, S2, 83, 83 would be represented as (s1, 1), (s1, 2), (s1,3), (s2,1), (s3,1), (s3,2).

Answer all of the following in terms of the parameters P;(X1), Pp(d), Pr(X;41|X;), Pe(Y;|X;), k (total number
of possible states), N and M (max duration).

e What is P(Z,)?

Poy,t) = {(1)31(1:1) Oii;.: 1 3)

e What is P(Z;11|Z;)? Hint: You will need to break this into cases where the transition function will behave

differently.

PD(d 2 ti + 1|d Z tl) when XiJr] = Xl and ti+1 = ti +1 and ti+1 S M
P(Xiy1,tiv1|Xi ti) = § Pr(X; 1| Xs)Pp(d =t;|d > t;)  when X;11 # X; and ;11 =1

0 0.W.

Where PD(d >t + 1|d > ti) = PD(d >t + 1)/PD(d > ti).

Being in X, t;, we know that d was drawn d > t;. Conditioning on this fact, we have two choices, if d > ¢; then
the next state is X;1+1 = X;, and if d = ¢; then X;11 # X; drawn from the transition distribution and ¢;11 = 1.

(4)

e What is P(Y;|Z;)?
p(YilXi, ti) = Pe(Yi|Xi)



