
CS 188
Fall 2019 Exam Prep 1
Q1. Search problems
It is training day for Pacbabies, also known as Hungry Running Maze Games day. Each of k Pacbabies starts
in its own assigned start location si in a large maze of size MxN and must return to its own Pacdad who is
waiting patiently but proudly at gi; along the way, the Pacbabies must, between them, eat all the dots in the
maze.

At each step, all k Pacbabies move one unit to any open adjacent square. The only legal actions are Up, Down,
Left, or Right. It is illegal for a Pacbaby to wait in a square, attempt to move into a wall, or attempt to occupy
the same square as another Pacbaby. To set a record, the Pacbabies must find an optimal collective solution.

(a) Define a minimal state space representation for this problem.

(b) How large is the state space?

(c) What is the maximum branching factor for this problem?

# 4k

# 8k
# 4k2MN

# 4k24

(d) Let MH(p, q) be the Manhattan distance between positions p and q and F be the set of all positions of
remaining food pellets and pi be the current position of Pacbaby i. Which of the following are admissible
heuristics?

� hA:
∑k

i=1 MH(pi,gi)

k

� hB : max1≤i≤k MH(pi, gi)

� hC : max1≤i≤k[maxf∈F MH(pi, f)]

� hD: max1≤i≤k[minf∈F MH(pi, f)]

� hE : min1≤i≤k[minf∈F MH(pi, f)]

� hF : minf∈F [max1≤i≤k MH(pi, f)]

Now suppose that some of the squares are flooded with water. In the flooded squares, it takes two timesteps
to travel through the square, rather than one. However, the Pacbabies don’t know which squares are flooded
and which aren’t, until they enter them. After a Pacbaby enters a flooded square, its howls of despair instantly
inform all the other Pacbabies of this fact.

(e) Define a minimal space of belief states for this problem.
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(f) How many possible environmental configurations are there in the initial belief state, before the Pacbabies
receive any wetness percepts?

(g) Given the current belief state, how many different belief states can be reached in a single step?

# 4k

# 8k
# 4k2MN

# 4k24
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Q2. Search
(a) Rubik’s Search

Note: You do not need to know what a Rubik’s cube is in order to solve this problem.

A Rubik’s cube has about 4.3 × 1019 possible configurations, but any configuration can be solved in 20
moves or less. We pose the problem of solving a Rubik’s cube as a search problem, where the states are
the possible configurations, and there is an edge between two states if we can get from one state to another
in a single move. Thus, we have 4.3× 1019 states. Each edge has cost 1. Note that the state space graph
does contain cycles. Since we can make 27 moves from each state, the branching factor is 27. Since any
configuration can be solved in 20 moves or less, we have h∗(n) ≤ 20.

For each of the following searches, estimate the approximate number of states expanded. Mark the option
that is closest to the number of states expanded by the search. Assume that the shortest solution for our
start state takes exactly 20 moves. Note that 2720 is much larger than 4.3× 1019.

(i) DFS Tree Search
Best Case: # 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

Worst Case: # 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

(ii) DFS graph search
Best Case: # 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

Worst Case: # 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

(iii) BFS tree search
Best Case: # 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

Worst Case: # 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

(iv) BFS graph search
Best Case: # 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

Worst Case: # 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

(v) A* tree search with a perfect heuristic, h∗(n), Best Case

# 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

(vi) A* tree search with a bad heuristic, h(n) = 20− h∗(n), Worst Case

# 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

(vii) A* graph search with a perfect heuristic, h∗(n), Best Case

# 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

(viii) A* graph search with a bad heuristic, h(n) = 20− h∗(n), Worst Case

# 20 # 4.3× 1019 # 2720 # ∞ (never finishes)
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(b) Limited A∗ Graph Search
Consider a variant of A∗ graph search called Limited A∗ graph search. It is exactly like the normal algo-
rithm, but instead of keeping all of the fringe, at the end of each iteration of the outer loop, the fringe is
reduced to just a certain amount of the best paths. I.e. after all children have been inserted, the fringe is
cut down to the a certain length. The pseudo-code for normal A∗ graph search is reproduced below, the
only modification being an argument W for the limit.

1: function A* Graph Search(problem,W )
2: fringe ← an empty priority queue
3: fringe ← Insert(Make-Node(Initial-State[problem]), fringe)
4: closed ← an empty set
5: Add Initial-State[problem] to closed
6: loop
7: if fringe is empty then
8: return failure
9: end if

10: node ← Remove-Front(fringe)
11: if Goal-Test(problem, State[node]) then
12: return node
13: end if
14: if State[node] not in closed then
15: Add State[node] to closed
16: for successor in GetSuccessors(problem, State[node]) do
17: fringe ← Insert(Make-Successor-Node(successor, node), fringe)
18: end for
19: end if
20: fringe = fringe[0:W ]
21: end loop
22: end function

(i) For a positive W , limited A∗ graph search is complete.

# True # False

(ii) For a positive W , limited A∗ graph search is optimal.

# True # False

(iii) Provide the smallest value of W such that this algorithm is equivalent to normal A∗ graph search
(i.e. the addition of line 20 makes no difference to the execution of the algorithm).
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Q3. Pacman’s Life
Suppose a maze has height M and width N and there are F food pellets at the beginning. Pacman can move
North, South, East or West in the maze.

(a) In this subquestion, the position of Pacman is known, and he wants to pick up all F food pellets in the
maze. However, Pacman can move North at most two times overall.

What is the size of a minimal state space for this problem? Give your answer as a product of terms
that reference problem quantities such as (but not limited to) M,N,F , etc. Below each term, state the
information it encodes. For example, you might write 4×MN and write number of directions underneath
the first term and Pacman’s position under the second.

(b) In this subquestion, Pacman is lost in the maze, and does not know his location. However, Pacman still
wants to visit every single square (he does not care about collecting the food pellets any more). Pacman’s
task is to find a sequence of actions which guarantees that he will visit every single square.

What is the size of a minimal state space for this problem? As in part(a), give your answer as a product
of terms along with the information encoded by each term. You will receive partial credit for a complete
but non-minimal state space.
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