Q1. Bayes Nets and Joint Distributions

(a) Write down the joint probability distribution associated with the following Bayes Net. Express the answer as a product of terms representing individual conditional probabilities tables associated with this Bayes Net:

```
A -> B
|  |  \\
|  | /
C | |
|  |  \\
|  | /
|  |  \\
|  | /
D
```

(b) Draw the Bayes net associated with the following joint distribution:

\[P(A) \cdot P(B) \cdot P(C|A, B) \cdot P(D|C) \cdot P(E|B, C) \]

(c) Do the following products of factors correspond to a valid joint distribution over the variables A, B, C, D? (Circle TRUE/FALSE.)

(i) TRUE FALSE \[P(A) \cdot P(B) \cdot P(C|A) \cdot P(C|B) \cdot P(D|C) \]

(ii) TRUE FALSE \[P(A) \cdot P(B|A) \cdot P(C) \cdot P(D|B, C) \]

(iii) TRUE FALSE \[P(A) \cdot P(B|A) \cdot P(C) \cdot P(C|A) \cdot P(D) \]

(iv) TRUE FALSE \[P(A|B) \cdot P(B|C) \cdot P(C|D) \cdot P(D|A) \]
(d) What factor can be multiplied with the following factors to form a valid joint distribution? (Write “none” if the given set of factors can’t be turned into a joint by the inclusion of exactly one more factor.)

(i) \(P(A) \cdot P(B|A) \cdot P(C|A) \cdot P(E|B, C, D) \)

(ii) \(P(D) \cdot P(B) \cdot P(C|D, B) \cdot P(E|C, D, A) \)

(e) Answer the next questions based off of the Bayes Net below:

All variables have domains of \(-1, 0, 1\)

(i) Before eliminating any variables or including any evidence, how many entries does the factor at \(G\) have?

(ii) Now we observe \(e = 1\) and want to query \(P(D|e = 1)\), and you get to pick the first variable to be eliminated.

- Which choice would create the largest factor \(f_1\)?

- Which choice would create the smallest factor \(f_1\)?
Q2. Bayes’ Nets Representation

(a) Graph Structure: Conditional Independence

Consider the Bayes’ net given below.

```
A  B  C
F  H  A
  A  A
  G  D
  E
F  G  H
```

Remember that \(X \perp \perp Y \) reads as “\(X \) is independent of \(Y \) given nothing”, and \(X \perp \perp Y|\{Z,W\} \) reads as “\(X \) is independent of \(Y \) given \(Z \) and \(W \).”

For each expression, fill in the corresponding circle to indicate whether it is True or False.

(i) True False It is guaranteed that \(A \perp \perp B \)

(ii) True False It is guaranteed that \(A \perp \perp C \)

(iii) True False It is guaranteed that \(A \perp \perp D | \{B,H\} \)

(iv) True False It is guaranteed that \(A \perp \perp E|F \)

(v) True False It is guaranteed that \(G \perp \perp E|B \)

(vi) True False It is guaranteed that \(F \perp \perp C|D \)

(vii) True False It is guaranteed that \(E \perp \perp D|B \)

(viii) True False It is guaranteed that \(C \perp \perp H|G \)
(b) Graph structure: Representational Power

Recall that any directed acyclic graph G has an associated family of probability distributions, which consists of all probability distributions that can be represented by a Bayes’ net with structure G.

For the following questions, consider the following six directed acyclic graphs:

(i) Assume all we know about the joint distribution $P(A, B, C)$ is that it can be represented by the product $P(A|B, C)P(B|C)P(C)$. Mark each graph for which the associated family of probability distributions is guaranteed to include $P(A, B, C)$.

□ G_1 □ G_2 □ G_3
□ G_4 □ G_5 □ G_6

(ii) Now assume all we know about the joint distribution $P(A, B, C)$ is that it can be represented by the product $P(C|B)P(B|A)P(A)$. Mark each graph for which the associated family of probability distributions is guaranteed to include $P(A, B, C)$.

□ G_1 □ G_2 □ G_3
□ G_4 □ G_5 □ G_6
(c) Marginalization and Conditioning

Consider a Bayes’ net over the random variables A, B, C, D, E with the structure shown below, with full joint distribution $P(A, B, C, D, E)$.

The following three questions describe different, unrelated situations (your answers to one question should not influence your answer to other questions).

(i) Consider the marginal distribution $P(A, B, D, E) = \sum_c P(A, B, c, D, E)$, where C was eliminated. On the diagram below, draw the minimal number of arrows that results in a Bayes’ net structure that is able to represent this marginal distribution. If no arrows are needed write “No arrows needed.”

(ii) Assume we are given an observation: $A = a$. On the diagram below, draw the minimal number of arrows that results in a Bayes’ net structure that is able to represent the conditional distribution $P(B, C, D, E \mid A = a)$. If no arrows are needed write “No arrows needed.”

(iii) Assume we are given two observations: $D = d, E = e$. On the diagram below, draw the minimal number of arrows that results in a Bayes’ net structure that is able to represent the conditional distribution $P(A, B, C \mid D = d, E = e)$. If no arrows are needed write “No arrows needed.”