CSPs

CSPs are defined by three factors:

1. **Variables** - CSPs possess a set of N variables $X_1, ..., X_N$ that can each take on a single value from some defined set of values.
2. **Domain** - A set $\{x_1, ..., x_d\}$ representing all possible values that a CSP variable can take on.
3. **Constraints** - Constraints define restrictions on the values of variables, potentially with regard to other variables.

CSPs are often represented as constraint graphs, where nodes represent variables and edges represent constraints between them.

- **Unary Constraints** - Unary constraints involve a single variable in the CSP. They are not represented in constraint graphs, instead simply being used to prune the domain of the variable they constrain when necessary.
- **Binary Constraints** - Binary constraints involve two variables. They're represented in constraint graphs as traditional graph edges.
- **Higher-order Constraints** - Constraints involving three or more variables can also be represented with edges in a CSP graph.

In **forward checking**, whenever a value is assigned to a variable X_i, forward checking prunes the domains of unassigned variables that share a constraint with X_i that would violate the constraint if assigned. The idea of forward checking can be generalized into the principle of **arc consistency**. For arc consistency, we interpret each undirected edge of the constraint graph for a CSP as two directed edges pointing in opposite directions. Each of these directed edges is called an **arc**. The arc consistency algorithm works as follows:

- Begin by storing all arcs in the constraint graph for the CSP in a queue Q.
- Iteratively remove arcs from Q and enforce the condition that in each removed arc $X_i \rightarrow X_j$, for every remaining value v for the tail variable X_i, there is at least one remaining value w for the head variable X_j such that $X_i = v, X_j = w$ does not violate any constraints. If some value v for X_i would not work with any of the remaining values for X_j, we remove v from the set of possible values for X_i.
- If at least one value is removed for X_i when enforcing arc consistency for an arc $X_i \rightarrow X_j$, add arcs of the form $X_k \rightarrow X_i$ to Q, for all unassigned variables X_k. If an arc $X_k \rightarrow X_i$ is already in Q during this step, it doesn’t need to be added again.
- Continue until Q is empty, or the domain of some variable is empty and triggers a backtrack.

We’ve delineated that when solving a CSP, we fix some ordering for both the variables and values involved. In practice, it’s often much more effective to compute the next variable and corresponding value “on the fly” with two broad principles, **minimum remaining values** and **least constraining value**.
• **Minimum Remaining Values (MRV)** - When selecting which variable to assign next, using an MRV policy chooses whichever unassigned variable has the fewest valid remaining values (the *most constrained variable*).

• **Least Constraining Value (LCV)** - Similarly, when selecting which value to assign next, a good policy to implement is to select the value that prunes the fewest values from the domains of the remaining unassigned values.
1 Search and Heuristics

Imagine a car-like agent wishes to exit a maze like the one shown below:

![Maze Diagram](attachment:image.png)

The agent is directional and at all times faces some direction \(d \in \{N, S, E, W\} \). With a single action, the agent can either move forward at an adjustable velocity \(v \) or turn. The turning actions are left and right, which change the agent’s direction by 90 degrees. Turning is only permitted when the velocity is zero (and leaves it at zero). The moving actions are fast and slow. Fast increments the velocity by 1 and slow decrements the velocity by 1; in both cases the agent then moves a number of squares equal to its NEW adjusted velocity (see example below). A consequence of this formulation is that it is impossible for the agent to move in the same nonzero velocity for two consecutive timesteps. Any action that would result in a collision with a wall crashes the agent and is illegal. Any action that would reduce \(v \) below 0 or above a maximum speed \(V_{\text{max}} \) is also illegal. The agent’s goal is to find a plan which parks it (stationary) on the exit square using as few actions (time steps) as possible.

As an example: if at timestep \(t \) the agent’s current velocity is 2, by taking the fast action, the agent first increases the velocity to 3 and move 3 squares forward, such that at timestep \(t + 1 \) the agent’s current velocity will be 3 and will be 3 squares away from where it was at timestep \(t \). If instead the agent takes the slow action, it first decreases its velocity to 1 and then moves 1 square forward, such that at timestep \(t + 1 \) the agent’s current velocity will be 1 and will be 1 squares away from where it was at timestep \(t \). If, with an instantaneous velocity of 1 at timestep \(t + 1 \), it takes the slow action again, the agent’s current velocity will become 0, and it will not move at timestep \(t + 1 \). Then at timestep \(t + 2 \), it will be free to turn if it wishes. Note that the agent could not have turned at timestep \(t + 1 \) when it had a current velocity of 1, because it has to be stationary to turn.

(a) If the grid is \(M \) by \(N \), what is the size of the state space? Justify your answer. You should assume that all configurations are reachable from the start state.

The size of the state space is \(4MN(V_{\text{max}} + 1) \). The state representation is (direction facing, \(x \), \(y \), speed).

Note that the speed can take any value in \(\{0, \ldots, V_{\text{max}}\} \).

(b) Is the Manhattan distance from the agent’s location to the exit’s location admissible? Why or why not?

No, Manhattan distance is not an admissible heuristic. The agent can move at an average speed of greater than 1 (by first speeding up to \(V_{\text{max}} \) and then slowing down to 0 as it reaches the goal), and so can reach the goal in less time steps than there are squares between it and the goal. A specific example: A timestep 0, the agent’s starts stationary at square 0 and the target is 9 squares away at square 9. At timestep 0, the agent takes the fast action and ends up at square 1 with a velocity of 1. At timestep 1, the agent takes the fast action and ends up at square 3 with a velocity of 2. At timestep 2, the agent takes the fast action and ends up at square 6 with a velocity of 3. At timestep 3, the agent takes the slow action and ends up at square 8 with a velocity of 2. At timestep 4, the agent takes the slow action and ends up at square 9 with a velocity of 1. At timestep 5, the agent takes the slow action and stays at square 9 with a velocity of 0. Therefore, the agent can move 9 squares by taking 6 actions.
(c) State and justify a non-trivial admissible heuristic for this problem which is not the Manhattan distance to the exit.

There are many answers to this question. Here are a few, in order of weakest to strongest:

(a) The number of turns required for the agent to face the goal.

(b) Consider a relaxation of the problem where there are no walls, the agent can turn, change speed arbitrarily, and maintain constant velocity. In this relaxed problem, the agent would move with V_{max}, and then suddenly stop at the goal, thus taking $d_{\text{manhattan}}/V_{\text{max}}$ time.

(c) We can improve the above relaxation by accounting for the acceleration and deceleration dynamics. In this case the agent will have to accelerate from 0 from the start state, maintain a constant velocity of V_{max}, and slow down to 0 when it is about to reach the goal. Note that this heuristic will always return a greater value than the previous one, but is still not an overestimate of the true cost to reach the goal. We can say that this heuristic dominates the previous one.

In particular, let us assume that $d_{\text{manhattan}}$ is greater than and equal to the distance it takes to accelerate to and decelerate from V_{max} (In the case that $d_{\text{manhattan}}$ is smaller than this distance, we can still use $d_{\text{manhattan}}/V_{\text{max}}$ as a heuristic). We can break up the $d_{\text{manhattan}}$ into three parts: d_{accel}, d_{Vmax}, and d_{decel}. The agent travels a distance of d_{accel} when it accelerates from 0 to V_{max} velocity. The agent travels a distance of d_{decel} when it decelerates from V_{max} to 0 velocity. In between acceleration and deceleration, the agent travels a distance of $d_{\text{Vmax}} = d_{\text{manhattan}} - d_{\text{accel}} - d_{\text{decel}}$.

$d_{\text{accel}} = 1 + 2 + 3 + V_{\text{max}} = \frac{(V_{\text{max}})(V_{\text{max}}+1)}{2}$ and $d_{\text{decel}} = (V_{\text{max}} - 1) + (V_{\text{max}} - 2) + \ldots + 1 + 0 = \frac{(V_{\text{max}})(V_{\text{max}}-1)}{2}$. So $d_{\text{Vmax}} = d_{\text{manhattan}} - \frac{(V_{\text{max}})(V_{\text{max}}+1)}{2} - \frac{(V_{\text{max}})(V_{\text{max}}-1)}{2} = d_{\text{manhattan}} - V_{\text{max}}^2$. It takes V_{max} steps to travel the initial d_{accel}, d_{decel}, $\frac{d_{\text{manhattan}} - V_{\text{max}}^2}{V_{\text{max}}}$ steps to travel the middle d_{Vmax} and V_{max} steps to travel the last d_{decel}. Therefore, our heuristic is

$$
\begin{align*}
\begin{cases}
\frac{d_{\text{manhattan}}}{V_{\text{max}}} & \text{if } d_{\text{manhattan}} \leq V_{\text{max}}^2 = d_{\text{accel}} + d_{\text{decel}} \\
\frac{d_{\text{manhattan}}}{V_{\text{max}}} + V_{\text{max}} & \text{if } d_{\text{manhattan}} > V_{\text{max}}^2 = d_{\text{accel}} + d_{\text{decel}}
\end{cases}
\end{align*}
$$

(d) If we used an inadmissible heuristic in A* graph search, would the search be complete? Would it be optimal?

If the heuristic function is bounded, then A* graph search would visit all the nodes eventually, and would find a path to the goal state if there exists one. An inadmissible heuristic does not guarantee optimality as it can make the good optimal goal look as though it is very far off, and take you to a suboptimal goal.

(e) If we used an admissible heuristic in A* graph search, is it guaranteed to return an optimal solution? What if the heuristic was consistent? What if we were using A* tree search instead of A* graph search?

Although admissible heuristics guarantee optimality for A* tree search, they do not necessarily guarantee optimality for A* graph search; they are only guaranteed to return an optimal solution if they are consistent as well.

(f) Give a general advantage that an inadmissible heuristic might have over an admissible one.

The time to solve an A* search problem is a function of two factors: the number of nodes expanded, and the time spent per node. An inadmissible heuristic may be faster to compute, leading to a solution that is obtained faster due to less time spent per node. It can also be a closer estimate to the actual cost function (even though at times it will overestimate!), thus expanding less nodes. We lose the guarantee of optimality; however, by using an inadmissible heuristic. But sometimes we may be okay with finding a suboptimal solution to a search problem.
Q2. CSPs: Trapped Pacman

Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost (G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom, rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong (S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares will not both be exits.

Pacman models this problem using variables X_i for each corridor i and domains P, G, and E.

(a) State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

Binary:
- $X_1 = P$ or $X_2 = P$, $X_2 = E$ or $X_3 = E$,
- $X_3 = E$ or $X_4 = E$, $X_4 = P$ or $X_5 = P$,
- $X_5 = P$ or $X_6 = P$, $X_1 = P$ or $X_6 = P$,
- $\forall i, j \text{ s.t. } \text{Adj}(i, j) \neg(X_i = E \text{ and } X_j = E)$

Unary:
- $X_2 \neq P$,
- $X_3 \neq P$,
- $X_4 \neq P$

Note: This is just one of many solutions. The answers below will be based on this formulation.

(b) Suppose we assign X_1 to E. Perform forward checking after this assignment. Also, enforce unary constraints.

```
<table>
<thead>
<tr>
<th></th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td></td>
<td>G</td>
<td>G</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td>G</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td>G</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X5</td>
<td>P</td>
<td>G</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
(c) Suppose forward checking returns the following set of possible assignments:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>X_3</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>X_4</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>X_5</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>X_6</td>
<td>P</td>
<td>G</td>
</tr>
</tbody>
</table>

According to MRV, which variable or variables could the solver assign first?

X_1 or X_5 (tie breaking)

(d) Assume that Pacman knows that $X_6 = G$. List all the solutions of this CSP or write none if no solutions exist.

(P,E,G,E,P,G)
(P,G,E,G,P,G)
Q3. Heuristics

For parts a, b, c below, consider now the CornersProblem from Project 1: there is a food pellet located at each corner, and Pacman must navigate the maze to find each one.

(a) For each of the following heuristics, say whether or not it is admissible. If a heuristic is inadmissible, give a concrete counterexample (i.e., draw a maze configuration in which the value of the heuristic exceeds the true cost).

- \(h_1 \) is the maze distance to the nearest food pellet (if no food pellets remain, \(h_1 = 0 \)).
 - **Admissible** or **Not-Admissible**
 - Eating pellets requires reaching them, which means moving at least this far.

- \(h_2 \) is the number of uneaten food pellets remaining.
 - **Admissible** or **Not-Admissible**
 - Eating pellets requires reaching them all, which means at least this many moves.

- \(h_3 = h_1 + h_2 \)
 - **Admissible** or **Not-Admissible**
 - Doesn’t quite work because if the first pellet is one step away this heuristic counts 2. Counterexample: In a 2x2 board with pellets in 3 corners, \(h_3 = 4 \) but \(h^* = 3 \).

- \(h_4 = |h_1 - h_2| \)
 - **Admissible** or **Not-Admissible**
 - Since \(h_2 \geq 0 \), this is never bigger than \(h_1 \).

- \(h_5 = \max\{h_1, h_2\} \)
 - **Admissible** or **Not-Admissible**
 - See textbook. Since both \(h_1 \) and \(h_2 \) are lower bounds on \(h^* \), their maximum is also.

(b) Pick one heuristic from part (a) that you said was inadmissible; call it \(h_k \). Give the smallest constant \(\epsilon > 0 \) such that \(h' = h_k - \epsilon \) is an admissible heuristic. Briefly justify your answer.

\(\epsilon = 1 \) works. It must be at least 1, to fix the counterexample given above. And 1 works, because the total cost must be at least the cost to get to any pellet and the cost of eating the remaining \(n - 1 \) pellets.

(c) Let \(h_i \) and \(h_j \) be two admissible heuristics and let \(h_\alpha = \alpha h_i + (1 - \alpha)h_j \). Give the range of values for \(\alpha \) for which \(h_\alpha \) is guaranteed to be admissible.

\([0,1]\) works; this heuristic is dominated by \(h_5 \) and is therefore admissible.
(d) Consider an arbitrary search problem in a graph with start state \(S \) and goal state \(G \). Let \(h^* \) be the “perfect heuristic,” so \(h^*(x) \) is the optimal distance from \(x \) to the goal \(G \). Let \(\epsilon \) be some positive number.

For each of the heuristics \(h_A, h_B, \) and \(h_C \), give the range of possible values for the cost of a path that \(A^* \) tree search could return when using that heuristic. You may write your answers in terms of \(h^*(S) \), and \(\epsilon \).

Let \(h_0 \) be an arbitrary admissible heuristic.

(i) \(h_A \): \(h_A = h_0 \) for all states except at one unspecified state \(y \), where \(h_A(y) = h_0(y) + \epsilon \)

\([h^*(S), h^*(S) + \epsilon]\); if \(y \) is on the optimal path, it makes the optimal path look \(\epsilon \) worse than it is, allowing nodes on some suboptimal path to be selected for expansion if they are no more than \(\epsilon \) worse.

(ii) \(h_B \): \(h_B(x) = h_0(x) + \epsilon \) for all states \(x \).

\([h^*(S), h^*(S)]\): as \(A^* \) expands states in order of \(f = g + h \), adding a constant to \(h \) for all nodes doesn’t change the order of expansion, so it still returns an optimal solution as before. This might seem counterintuitive because \(h_B \) is “worse” than \(h_A \) almost everywhere!

(iii) \(h_C \): \(h_C(x) = h_0(x) + \epsilon \) for all states \(x \) except the goal state \(G \), where \(h_C(G) = h_0(G) = 0 \).

\([h^*(S), h^*(S) + \epsilon]\); this one is very tricky and most people missed it—but fortunately it’s only worth one point. The reason a suboptimal path can be returned is that the goal can get onto the queue via a suboptimal path first, and it can look \textit{epsilon} better than the last node on the optimal path. For example, consider the graph with \(S-A = 1, A-G = 1, \) and \(S-G = 3 \), and let \(\epsilon = 1.01 \).