CS 188: Artificial Intelligence
Reinforcement Learning III

Instructor: Anca Dragan, University of California, Berkeley

[These slides were created by Dan Klein, Pieter Abbeel, and Anca Dragan. http://ai.berkeley.edu]
Reinforcement Learning

- We still assume an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s, a, s') \)
 - A reward function \(R(s, a, s') \)
- Still looking for a policy \(\pi(s) \)

- New twist: don’t know \(T \) or \(R \), so must try out actions

- Big idea: Compute all averages over \(T \) using sample outcomes
The Story So Far: MDPs and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>VI/PI on approx. MDP</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>PE on approx. MDP</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Free

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Value Learning</td>
</tr>
</tbody>
</table>
Q-Learning

- **Q-Learning**: sample-based Q-value iteration

 \[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- Learn Q(s,a) values as you go

 - Receive a sample \((s, a, s', r)\)
 - Consider your old estimate: \(Q(s, a)\)
 - Consider your new sample estimate:

 \[\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]

 - no longer policy evaluation!

 - Incorporate the new estimate into a running average:

 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha)[\text{sample}] \]

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called **off-policy learning**

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]
Video of Demo Q-Learning -- Gridworld
Video of Demo Q-Learning -- Crawler
Exploration vs. Exploitation
Video of Demo Q-learning – Manual Exploration – Bridge Grid
Video of Demo Q-learning – Epsilon-Greedy – Crawler
Video of Demo Q-learning – Exploration Function – Crawler
Even if you learn the optimal policy, you still make mistakes along the way!

Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards.

Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal.

Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret.
Approximate Q-Learning
Generalizing Across States

- Basic Q-Learning keeps a table of all q-values

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we’ll see it over and over again
Let’s say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!
Video of Demo Q-Learning Pacman – Tiny – Watch All
Video of Demo Q-Learning Pacman – Tiny – Silent Train
Video of Demo Q-Learning Pacman – Tricky – Watch All
Feature-Based Representations

- **Solution**: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Linear Value Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1f_1(s) + w_2f_2(s) + \ldots + w_nf_n(s) \]

\[Q(s, a) = w_1f_1(s, a) + w_2f_2(s, a) + \ldots + w_nf_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers

- Disadvantage: states may share features but actually be very different in value!
Approximate Q-Learning

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Q-learning with linear Q-functions:

 transition \(= (s, a, r, s') \)

 difference \(= [r + \gamma \max_{a'} Q(s', a')] - Q(s, a) \)

 \[Q(s, a) \leftarrow Q(s, a) + \alpha \text{[difference]} \]

 \(w_i \leftarrow w_i + \alpha \text{[difference]} f_i(s, a) \)

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features

- Formal justification: online least squares
Example: Q-Pacman

\[Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a) \]

\[f_{DOT}(s, \text{NORTH}) = 0.5 \]
\[f_{GST}(s, \text{NORTH}) = 1.0 \]

\[a = \text{NORTH} \]
\[r = -500 \]

\[Q(s, \text{NORTH}) = +1 \]
\[r + \gamma \max_{a'} Q(s', a') = -500 + 0 \]

\[\text{difference} = -501 \]

\[w_{DOT} \leftarrow 4.0 + \alpha [-501] \cdot 0.5 \]
\[w_{GST} \leftarrow -1.0 + \alpha [-501] \cdot 1.0 \]

\[Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a) \]
Video of Demo Approximate Q-Learning -- Pacman
approximate Q-learning with neural nets
Q-Learning and Least Squares
Linear Approximation: Regression

Prediction:
\[\hat{y} = w_0 + w_1 f_1(x) \]

Prediction:
\[\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x) \]
Optimization: Least Squares

$$\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i) \right)^2$$

Observation y
Prediction \hat{y}
Error or "residual"
Minimizing Error

Imagine we had only one point x, with features $f(x)$, target value y, and weights w:

$$
\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2
$$

$$
\frac{\partial \text{error}(w)}{\partial w_m} = - \left(y - \sum_k w_k f_k(x) \right) f_m(x)
$$

$$
w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x)
$$

Approximate q update explained:

$$
w_m \leftarrow w_m + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right] f_m(s, a)
$$

“target” “prediction”
Overfitting: Why Limiting Capacity Can Help
New in Model-Free RL
Policy Search
Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning’s priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We’ll see this distinction between modeling and prediction again later in the course

- Solution: learn policies that maximize rewards, not the values that predict them

- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights
Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

- Better methods exploit lookahead structure, sample wisely, change multiple parameters…
Policy Search

[Video: HELICOPTER]
The Story So Far: MDPs and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>VI/PI on approx. MDP</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>PE on approx. MDP</td>
</tr>
</tbody>
</table>

*use features to generalize

Unknown MDP: Model-Free

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Value Learning</td>
</tr>
</tbody>
</table>

*use features to generalize
Discussion: Model-Based vs Model-Free RL
New in Model-Based RL

- http://deepmpc.cs.cornell.edu/
 - Learn a model with a deep neural network and use it for MPC

- https://sites.google.com/site/visuomotorpolicy/
 - Gpolicy search (GPS) - trains local models around trajectories, planning with local models, then train a policy based on the local plans
Conclusion

- We’re done with Part I: Search and Planning!

- We’ve seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning

- Next up: Part II: Uncertainty and Learning!