CS 188: Artificial Intelligence

Search Continued

Instructors: Anca Dragan

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel; ai.berkeley.edu]
Search

- **Search problem:**
 - States (abstraction of the world)
 - Actions (and costs)
 - Successor function (world dynamics):
 - \(\{s' \mid s,a \rightarrow s'\} \)
 - Start state and goal test
Depth-First Search
Depth-First Search

Strategy: expand a deepest node first

Implementation:
Fringe is a LIFO stack
Search Algorithm Properties
Search Algorithm Properties

- **Complete**: Guaranteed to find a solution if one exists?
 - Return in finite time if not?
- **Optimal**: Guaranteed to find the least cost path?
- **Time complexity**?
- **Space complexity**?

Cartoon of search tree:
- b is the branching factor
- m is the maximum depth
- Solutions at various depths

Number of nodes in entire tree?
- $1 + b + b^2 + \ldots + b^m = O(b^m)$

Diagram:
- A cartoon of a search tree showing:
 - b is the branching factor
 - m is the maximum depth
 - Solutions at various depths
 - Number of nodes in the tree:
 - 1 node
 - b nodes
 - b^2 nodes
 - b^m nodes
Depth-First Search (DFS) Properties

- **What nodes DFS expand?**
 - Some left prefix of the tree.
 - Could process the whole tree!
 - If m is finite, takes time $O(b^m)$

- **How much space does the fringe take?**
 - Only has siblings on path to root, so $O(bm)$

- **Is it complete?**
 - m could be infinite, so only if we prevent cycles (more later)

- **Is it optimal?**
 - No, it finds the “leftmost” solution, regardless of depth or cost
Breadth-First Search
Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue
Breadth-First Search (BFS) Properties

- **What nodes does BFS expand?**
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time $O(b^s)$

- **How much space does the fringe take?**
 - Has roughly the last tier, so $O(b^s)$

- **Is it complete?**
 - s must be finite if a solution exists, so yes!
 (if no solution, still need depth $\neq \infty$)

- **Is it optimal?**
 - Only if costs are all 1 (more on costs later)
Video of Demo Maze Water DFS/BFS (part 1)
Video of Demo Maze Water DFS/BFS (part 2)
Iterative Deepening

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.

- Isn't that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!
Cost-Sensitive Search
BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.
Uniform Cost Search
Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)
Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε, then the “effective depth” is roughly C^*/ε
 - Takes time $O(b^{C^*/\varepsilon})$ (exponential in effective depth)

- How much space does the fringe take?
 - Has roughly the last tier, so $O(b^{C^*/\varepsilon})$

- Is it complete?
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes! (if no solution, still need depth $\neq \infty$)

- Is it optimal?
 - Yes! (Proof via A^*)
Uniform Cost Issues

- Remember: UCS explores increasing cost contours

- The good: UCS is complete and optimal!

- The bad:
 - Explores options in every “direction”
 - No information about goal location

- We’ll fix that soon!

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow water DFS/BFS/UCS (L2D7)]
Video of Demo Empty UCS
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)
All these search algorithms are the same except for fringe strategies

- Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
- Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
- Can even code one implementation that takes a variable queuing object
Up next: Informed Search

- Uninformed Search
 - DFS
 - BFS
 - UCS

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search
 - Graph Search
A heuristic is:
- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Pathing?
- Examples: Manhattan distance, Euclidean distance for pathing
Example: Heuristic Function

\[h(x) \]

Straight-line distance to Bucharest

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Cralova</td>
<td>160</td>
</tr>
<tr>
<td>Dobrota</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>178</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamț</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitești</td>
<td>98</td>
</tr>
<tr>
<td>Rimnicu Vâlcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timișoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy Search
Greedy Search

- Expand the node that seems closest...

- Is it optimal?
 - No. Resulting path to Bucharest is not the s
Greedy Search

- **Strategy**: expand a node that you think is closest to a goal state
 - **Heuristic**: estimate of distance to nearest goal for each state

- **A common case**:
 - Best-first takes you straight to the (wrong) goal

- **Worst-case**: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]
Video of Demo Contours Greedy (Empty)
Video of Demo Contours Greedy (Pacman Small Maze)
A* Search
Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or *backward cost* \(g(n) \)
- **Greedy** orders by goal proximity, or *forward cost* \(h(n) \)

\[f(n) = g(n) + h(n) \]

Example: Teg Grenager
When should A^* terminate?

- Should we stop when we enqueue a goal? No: only stop when we dequeue a goal.
Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!
Admissible Heuristics
Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe.

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs.
A heuristic h is **admissible** (optimistic) if:

$$0 \leq h(n) \leq h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal.

Examples:

- Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Optimality of A* Tree Search
Optimality of A* Tree Search

Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will exit the fringe before B
Optimality of A* Tree Search: Blocking

Proof:
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$

$$f(n) = g(n) + h(n) \quad \text{Definition of f-cost}$$
$$f(n) \leq g(A) \quad \text{Admissibility of h}$$
$$g(A) = f(A) \quad h = 0 \text{ at a goal}$$
Optimality of A* Tree Search: Blocking

Proof:
- Imagine B is on the fringe
- Some ancestor \(n \) of A is on the fringe, too (maybe A!)
- Claim: \(n \) will be expanded before B
 1. \(f(n) \) is less or equal to \(f(A) \)
 2. \(f(A) \) is less than \(f(B) \)

\[g(A) < g(B) \quad \text{B is suboptimal} \]
\[f(A) < f(B) \quad h = 0 \text{ at a goal} \]
Proof:
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$
 2. $f(A)$ is less than $f(B)$
 3. n expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal
Properties of A*

Uniform-Cost

A*

Diagram showing the differences between Uniform-Cost and A*. The Uniform-Cost search does not guarantee the shortest path, while A* does.
UCS vs A* Contours

- Uniform-cost expands equally in all “directions”

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]
Video of Demo Contours (Empty) -- UCS
Video of Demo Contours (Empty) -- Greedy
Video of Demo Contours (Empty) – A*
Video of Demo Contours (Pacman Small Maze) – A*
Comparison

Greedy

Uniform Cost

A*
Video of Demo Pacman (Tiny Maze) – UCS / A*
Video of Demo Empty Water Shallow/Deep – Guess Algorithm
Creating Heuristics

YOU GOT

HEURISTIC UPGRADE!
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.

- Often, admissible heuristics are solutions to relaxed problems, where new actions are available.

- Inadmissible heuristics are often useful too.
Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

Start State

Goal State

Admissible heuristics?
8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $h_{\text{start}} = 8$
- This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded when the optimal path has...

<table>
<thead>
<tr>
<th></th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>112</td>
<td>6,300</td>
<td>3.6 x 10^6</td>
</tr>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>

Statistics from Andrew Moore
What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

- Total *Manhattan* distance

- Why is it admissible?

- $h(\text{start}) = 3 + 1 + 2 + \ldots = 18$

Average nodes expanded when the optimal path has...

<table>
<thead>
<tr>
<th></th>
<th>4 steps</th>
<th>8 steps</th>
<th>12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>
How about using the *actual cost* as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What’s wrong with it?

With A*: a trade-off between quality of estimate and work per node
- As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself
Graph Search
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work.
In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
Graph Search

- Idea: never expand a state twice

- How to implement:
 - Tree search + set of expanded states (“closed set”)
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set

- Important: store the closed set as a set, not a list

- Can graph search wreck completeness? Why/why not?

- How about optimality?
A* Graph Search Gone Wrong?

State space graph

- **S**: 0+2
- **A**: 1+4
- **B**: 1+1
- **C**: 2+1
- **G**: 5+0

Search tree

- **S**: 0+2
 - **A**: 1+4
 - **B**: 1+1
 - **C**: 2+1
 - **G**: 5+0
 - **C**: 3+1
 - **G**: 6+0

Closed Set: S B C A
Consistency of Heuristics

- **Main idea**: estimated heuristic costs \leq actual costs
 - **Admissibility**: heuristic cost \leq actual cost to goal
 \[h(A) \leq \text{actual cost from } A \text{ to } G \]
 - **Consistency**: heuristic “arc” cost \leq actual cost for each arc
 \[h(A) - h(C) \leq \text{cost}(A \text{ to } C) \]
- **Consequences of consistency**:
 - The f value along a path never decreases
 \[h(A) \leq \text{cost}(A \text{ to } C) + h(C) \]
 - A* graph search is optimal
Optimality of A* Search

- With a admissible heuristic, Tree A* is optimal.
- With a consistent heuristic, Graph A* is optimal.
 - See slides, also video lecture from past years for details.
- With $h=0$, the same proof shows that UCS is optimal.
Search Gone Wrong?
A*: Summary
A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems
function Tree-Search(problem, fringe) return a solution, or failure
 fringe ← Insert(make-node(initial-state[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(problem, STATE[node]) then return node
 for child-node in EXPAND(STATE[node], problem) do
 fringe ← INSERT(child-node, fringe)
 end
 end
end
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
 closed ← an empty set
 fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(problem, STATE[node]) then return node
 if STATE[node] is not in closed then
 add STATE[node] to closed
 for child-node in EXPAND(STATE[node], problem) do
 fringe ← INSERT(child-node, fringe)
 end
 end
 end
The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object
Search and Models

- Search operates over models of the world
 - The agent doesn’t actually try all the plans out in the real world!
 - Planning is all “in simulation”
- Your search is only as good as your models...
Search Gone Wrong?