CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Instructor: Anca Dragan

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]
Constraint Satisfaction Problems

N variables

domain D

constraints

states
partial assignment

goal test
complete; satisfies constraints

successor function
assign an unassigned variable
What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems
Constraint Satisfaction Problems

- **Standard search problems:**
 - State is a “black box”: arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything

- **Constraint satisfaction problems (CSPs):**
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: Map Coloring

- **Variables:** WA, NT, Q, NSW, V, SA, T

- **Domains:** \(D = \{\text{red, green, blue}\} \)

- **Constraints:** adjacent regions must have different colors

 Implicit: \(\text{WA} \neq \text{NT} \)

 Explicit: \((\text{WA}, \text{NT}) \in \{(\text{red, green}), (\text{red, blue}), \ldots\} \)

- **Solutions** are assignments satisfying all constraints, e.g.:

\[
\{\text{WA}=\text{red}, \text{NT}=\text{green}, \text{Q}=\text{red}, \text{NSW}=\text{green}, \text{V}=\text{red}, \text{SA}=\text{blue}, \text{T}=\text{green}\}
\]
Constraint Graphs

WA, NT, Q, SA, NSW, V, T
Example: N-Queens

- **Formulation 1:**
 - **Variables:** X_{ij}
 - **Domains:** $\{0, 1\}$
 - **Constraints**

\[
\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\sum_{i,j} X_{ij} = N
\]
Example: N-Queens

- Formulation 2:
 - Variables: \(Q_k \)
 - Domains: \{1, 2, 3, \ldots N\}
 - Constraints:
 - Implicit: \(\forall i, j \) non-threatening\((Q_i, Q_j)\)
 - Explicit: \((Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}\)
Example: Cryptarithmetic

- **Variables:**
 \[F \quad T \quad U \quad W \quad R \quad O \quad X_1 \quad X_2 \quad X_3\]

- **Domains:**
 \[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\]

- **Constraints:**
 - \(\text{alldiff}(F, T, U, W, R, O)\)
 - \(O + O = R + 10 \cdot X_1\)
 - \(\ldots\)
Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - \{1,2,...,9\}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
 - (or can have a bunch of pairwise inequality constraints)
Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

- Many real-world problems involve real-valued variables...
Solving CSPs
Standard Search Formulation

- Standard search formulation of CSPs

- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

- We’ll start with the straightforward, naïve approach, then improve it
Search Methods

- What would BFS do?

\{
\{WA=g\} \{WA=r\} \ldots \{NT=g\} \ldots
\}
Search Methods

- What would BFS do?
- What would DFS do?
 - let’s see!
- What problems does naïve search have?
Video of Demo Coloring -- DFS
Backtracking Search
Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs

- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering -> better branching factor!
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step

- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
 - “Incremental goal test”

- Depth-first search with these two improvements is called backtracking search (not the best name)

- Can solve n-queens for \(n \approx 25 \)
Backtracking Example
Video of Demo Coloring – Backtracking
Backtracking Search

```plaintext
function BACKTRACKING-SEARCH(csp) returns solution/failure
    return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
    if assignment is complete then return assignment

    var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
    for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
        if value is consistent with assignment given CONSTRAINTS[csp] then
            add \{var = value\} to assignment
            result ← RECURSIVE-BACKTRACKING(assignment, csp)
            if result ≠ failure then return result
            remove \{var = value\} from assignment
    return failure
```

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?
Improving Backtracking

- General-purpose ideas give huge gains in speed

- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?

- Filtering: Can we detect inevitable failure early?
Filtering

Keep track of domains for unassigned variables and cross off bad options
Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment
Video of Demo Coloring – Backtracking with Forward Checking
Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- Constraint propagation: reason from constraint to constraint
An arc $X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint.

Forward checking?
Enforcing consistency of arcs pointing to each new assignment
Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

 - Important: If X loses a value, neighbors of X need to be rechecked!
 - Arc consistency detects failure earlier than forward checking
 - Can be run as a preprocessor or after each assignment
 - What’s the downside of enforcing arc consistency?

Remember: Delete from the tail!
Enforcing Arc Consistency in a CSP

Runtime: $O(n^2d^3)$, can be reduced to $O(n^2d^2)$

... but detecting all possible future problems is NP-hard – why?
Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]
Video of Demo Coloring – Backtracking with Forward Checking – Complex Graph
Video of Demo Coloring – Backtracking with Arc Consistency – Complex Graph