CS 188 Fall 2023

Regular Discussion 6 Solutions

Temporal Difference Learning

Temporal difference learning (TD learning) uses the idea of *learning from every experience*, rather than simply keeping track of total rewards and number of times states are visited and learning at the end as direct evaluation does. In policy evaluation, we used the system of equations generated by our fixed policy and the Bellman equation to determine the values of states under that policy (or used iterative updates like with value iteration).

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Each of these equations equates the value of one state to the weighted average over the discounted values of that state's successors plus the rewards reaped in transitioning to them. TD learning tries to answer the question of how to compute this weighted average without the weights, cleverly doing so with an **exponential moving average**. We begin by initializing $\forall s$, $V^{\pi}(s) = 0$. At each timestep, an agent takes an action $\pi(s)$ from a state s, transitions to a state s', and receives a reward $R(s, \pi(s), s')$. We can obtain a **sample value** by summing the received reward with the discounted current value of s' under π :

$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

This sample is a new estimate for $V^{\pi}(s)$. The next step is to incorporate this sampled estimate into our existing model for $V^{\pi}(s)$ with the exponential moving average, which adheres to the following update rule:

$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \cdot sample$$

Above, α is a parameter constrained by $0 \le \alpha \le 1$ known as the **learning rate** that specifies the weight we want to assign our existing model for $V^{\pi}(s)$, $1-\alpha$, and the weight we want to assign our new sampled estimate, α . It's typical to start out with learning rate of $\alpha = 1$, accordingly assigning $V^{\pi}(s)$ to whatever the first sample happens to be, and slowly shrinking it towards 0, at which point all subsequent samples will be zeroed out and stop affecting our model of $V^{\pi}(s)$.

Let's stop and analyze the update rule for a minute. Annotating the state of our model at different points in time by defining $V_k^{\pi}(s)$ and $sample_k$ as the estimated value of state s after the k^{th} update and the k^{th} sample respectively, we can reexpress our update rule:

$$V_k^{\pi}(s) \leftarrow (1-\alpha) V_{k-1}^{\pi}(s) + \alpha \cdot sample_k$$

This recursive definition for $V_k^{\pi}(s)$ happens to be very interesting to expand:

$$\begin{array}{lcl} V_k^{\pi}(s) & \leftarrow & (1-\alpha)V_{k-1}^{\pi}(s) + \alpha \cdot sample_k \\ V_k^{\pi}(s) & \leftarrow & (1-\alpha)[(1-\alpha)V_{k-2}^{\pi}(s) + \alpha \cdot sample_{k-1}] + \alpha \cdot sample_k \\ V_k^{\pi}(s) & \leftarrow & (1-\alpha)^2 V_{k-2}^{\pi}(s) + (1-\alpha) \cdot \alpha \cdot sample_{k-1} + \alpha \cdot sample_k \\ & \vdots \\ V_k^{\pi}(s) & \leftarrow & (1-\alpha)^k V_0^{\pi}(s) + \alpha \cdot [(1-\alpha)^{k-1} \cdot sample_1 + \ldots + (1-\alpha) \cdot sample_{k-1} + sample_k] \\ V_k^{\pi}(s) & \leftarrow & \alpha \cdot [(1-\alpha)^{k-1} \cdot sample_1 + \ldots + (1-\alpha) \cdot sample_{k-1} + sample_k] \end{array}$$

Because $0 \le (1 - \alpha) \le 1$, as we raise the quantity $(1 - \alpha)$ to increasingly larger powers, it grows closer and closer to 0. By the update rule expansion we derived, this means that older samples are given exponentially less

weight, exactly what we want since these older samples are computed using older (and hence worse) versions of our model for $V^{\pi}(s)$! This is the beauty of temporal difference learning - with a single straightforward update rule, we are able to:

- learn at every timestep, hence using information about state transitions as we get them since we're using iteratively updating versions of $V^{\pi}(s')$ in our samples rather than waiting until the end to perform any computation.
- give exponentially less weight to older, potentially less accurate samples.
- converge to learning true state values much faster with fewer episodes than direct evaluation.

Q-Learning

Both direct evaluation and TD learning will eventually learn the true value of all states under the policy they follow. However, they both have a major inherent issue - we want to find an optimal *policy* for our agent, which requires knowledge of the q-values of states. To compute q-values from the values we have, we require a transition function and reward function as dictated by the Bellman equation.

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

Resultingly, TD learning or direct evaluation are typically used in tandem with some model-based learning to acquire estimates of T and R in order to effectively update the policy followed by the learning agent. This became avoidable by a revolutionary new idea known as **Q-learning**, which proposed learning the q-values of states directly, bypassing the need to ever know any values, transition functions, or reward functions. As a result, Q-learning is entirely model-free. Q-learning uses the following update rule to perform what's known as **q-value iteration**:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')]$$

Note that this update is only a slight modification over the update rule for value iteration. Indeed, the only real difference is that the position of the max operator over actions has been changed since we select an action before transitioning when we're in a state, but we transition before selecting a new action when we're in a q-state.

With this new update rule under our belt, Q-learning is derived essentially the same way as TD learning, by acquiring **q-value samples**:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

and incorporating them into an exponential moving average.

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \cdot sample$$

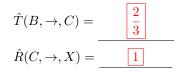
As long as we spend enough time in exploration and decrease the learning rate α at an appropriate pace, Q-learning learns the optimal q-values for every q-state. This is what makes Q-learning so revolutionary while TD learning and direct evaluation learn the values of states under a policy by following the policy before determining policy optimality via other techniques, Q-learning can learn the optimal policy directly even by taking suboptimal or random actions. This is called **off-policy learning** (contrary to direct evaluation and TD learning, which are examples of **on-policy learning**).

Q1. Reinforcement Learning

Imagine an unknown environments with four states (A, B, C, and X), two actions (\leftarrow and \rightarrow). An agent acting in this environment has recorded the following episode:

s	a	s'	r	Q-learning iteration numbers (for part b)
Α	\rightarrow	В	0	$1, 10, 19, \ldots$
B	\rightarrow	\mathbf{C}	0	$2, 11, 20, \ldots$
C	\leftarrow	В	0	$3, 12, 21, \ldots$
B	\leftarrow	Α	0	$4, 13, 22, \ldots$
A	\rightarrow	В	0	$5, 14, 23, \ldots$
B	\rightarrow	Α	0	$6, 15, 24, \ldots$
A	\rightarrow	В	0	$7, 16, 25, \ldots$
B	\rightarrow	\mathbf{C}	0	$8, 17, 26, \ldots$
C	\rightarrow	Х	1	$9, 18, 27, \ldots$

(a) Consider running model-based reinforcement learning based on the episode above. Calculate the following quantities:



(b) Now consider running Q-learning, repeating the above series of transitions in an infinite sequence. Each transition is seen at multiple iterations of Q-learning, with iteration numbers shown in the table above.

After which iteration of Q-learning do the following quantities first become nonzero? (If they always remain zero, write *never*).

$$Q(A, \rightarrow)? \qquad 14$$
$$Q(B, \leftarrow)? \qquad 22$$

- (c) True/False: For each question, you will get positive points for correct answers, zero for blanks, and negative points for incorrect answers. Circle your answer **clearly**, or it will be considered incorrect.
 - (i) [<u>true</u> or false] In Q-learning, you do not learn the model.
 Q learning is model-free, you learn the optimal policy explicitly, and the model itself implicitly.
 - (ii) [true or <u>false</u>] For TD Learning, if I multiply all the rewards in my update by some nonzero scalar p, the algorithm is still guaranteed to find the optimal policy.
 TD Learning does not necessarily find the optimal policy, it only learns the value of the states following some given policy.
 - (iii) [true or false] In Direct Evaluation, you recalculate state values after each transition you experience.

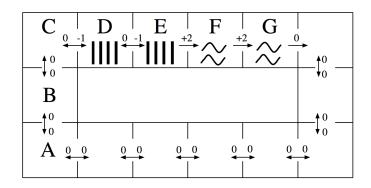
In order to estimate state values, you calculate state values from episodes of training, not single transitions.

(iv) [*true* or <u>false</u>] Q-learning requires that all samples must be from the optimal policy to find optimal q-values.

Q-learning is off-policy, you can still learn the optimal values even if you act suboptimally sometimes.

2 MDPs: Grid-World Water Park

Consider the MDP drawn below. The state space consists of all squares in a grid-world water park. There is a single waterslide that is composed of two ladder squares and two slide squares (marked with vertical bars and squiggly lines respectively). An agent in this water park can move from any square to any neighboring square, unless the current square is a slide in which case it must move forward one square along the slide. The actions are denoted by arrows between squares on the map and all deterministically move the agent in the given direction. The agent cannot stand still: it must move on each time step. Rewards are also shown below: the agent feels great pleasure as it slides down the water slide (+2), a certain amount of discomfort as it climbs the rungs of the ladder (-1), and receives rewards of 0 otherwise. The time horizon is infinite; this MDP goes on forever.



(a) How many (deterministic) policies π are possible for this MDP?

2^{11}

(b) Fill in the blank cells of this table with values that are correct for the corresponding function, discount, and state. *Hint: You should not need to do substantial calculation here.*

	γ	s = A	s = E
$V_3^*(s)$	1.0	0	4
$V_{10}^{*}(s)$	1.0	2	4
$V_{10}^{*}(s)$	0.1	0	2.2
$Q_1^*(s, \text{west})$	1.0		0
$Q_{10}^*(s, \text{west})$	1.0		3
$V^*(s)$	1.0	∞	∞
$V^*(s)$	0.1	0	2.2

 $V_{10}^*(A), \gamma = 1$: In 10 time steps with no discounting, the rewards don't decay, so the optimal strategy is to climb the two stairs (-1 reward each), and then slide down the two slide squares (+2 rewards each). You only have time to do this once. Summing this up, we get -1 - 1 + 2 + 2 = 2.

 $V_{10}^*(E), \gamma = 1$: No discounting, so optimal strategy is sliding down the slide. That's all you have time for. Sum of rewards = 2 + 2 = 4.

 $V_{10}^*(A), \gamma = 0.1$. The discount rate is 0.1, meaning that rewards 1 step further into the future are discounted

by a factor of 0.1. Let's assume from A, we went for the slide. Then, we would have to take the actions $A \to B, B \to C, C \to D, D \to E, E \to F, F \to G$. We get the first -1 reward from $C \to D$, discounted by γ^2 since it is two actions in the future. $D \to E$ is discounted by $\gamma^3, E \to F$ by γ^4 , and $F \to G$ by γ^5 . Since γ is low, the positive rewards you get from the slide have less of an effect as the larger negative rewards you get from climbing up. Hence, the sum of rewards of taking the slide path would be negative; the optimal value is 0.

 $V_{10}^*(E), \gamma = 0.1$. Now, you don't have to do the work of climbing up the stairs, and you just take the slide down. Sum of rewards would be 2 (for $E \to F$) + 0.2 (for $F \to G$, discounted by 0.1) = 2.2.

 $Q_{10}^{*}(E, west), \gamma = 1$. Remember that a Q-state (s,a) is when you start from state s and are committed to taking a. Hence, from E, you take the action West and land in D, using up one time step and getting an immediate reward of 0. From D, the optimal strategy is to climb back up the higher flight of stairs and then slide down the slide. Hence, the rewards would be $-1(D \to E) + 2(E \to F) + 2(F \to G) = 3$.

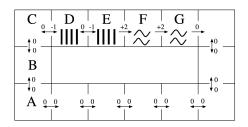
 $V^*(s), \gamma = 1$. Infinite game with no discount? Have fun sliding down the slide to your content from anywhere.

 $V^*(s), \gamma = 0.1$. Same reasoning apply to both A and E from $V_{10}^*(s)$. With discounting, the stairs are more costly to climb than the reward you get from sliding down the water slide. Hence, at A, you wouldn't want to head to the slide. From E, since you are already at the top of the slide, you should just slide down.

(c) Fill in the blank cells of this table with the Q-values that result from applying the Q-update for the transition specified on each row. You may leave Q-values that are unaffected by the current update blank. Use discount $\gamma = 1.0$ and learning rate $\alpha = 0.5$. Assume all Q-values are initialized to 0. (Note: the specified transitions would not arise from a single episode.)

	Q(D, west)	Q(D, east)	Q(E, west)	Q(E, east)
Initial:	0	0	0	0
Transition 1: $(s = D, a = \text{east}, r = -1, s' = E)$		-0.5		
Transition 2: $(s = E, a = \text{east}, r = +2, s' = F)$				1.0
Transition 3: $(s = E, a = \text{west}, r = 0, s' = D)$				
Transition 4: $(s = D, a = \text{east}, r = -1, s' = E)$		-0.25		

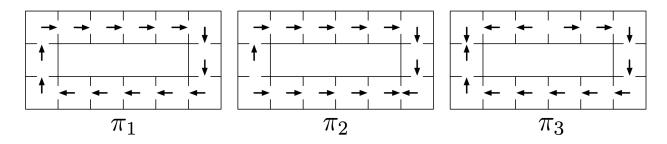
The agent is still at the water park MDP, but now we're going to use function approximation to represent Q-values. Recall that a policy π is greedy with respect to a set of Q-values as long as $\forall a, s \ Q(s, \pi(s)) \ge Q(s, a)$ (so ties may be broken in any way).



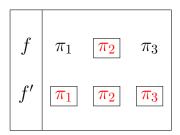
For the next subproblem, consider the following feature functions:

$$f(s,a) = \begin{cases} 1 & \text{if } a = \text{east,} \\ 0 & \text{otherwise.} \end{cases}$$
$$f'(s,a) = \begin{cases} 1 & \text{if } (a = \text{east}) \land \text{isSlide}(s), \\ 0 & \text{otherwise.} \end{cases}$$
(Note: isSlide(s) is true iff the state s is a slide square, i.e. either F or G.)

Also consider the following policies:



(d) Which are greedy policies with respect to the Q-value approximation function obtained by running the single Q-update for the transition (s = F, a = east, r = +2, s' = G) while using the specified feature function? You may assume that all feature weights are zero before the update. Use discount $\gamma = 1.0$ and learning rate $\alpha = 1.0$. Circle all that apply.



You see the sample (F, east, G, +2). Use approximate Q-Learning to update the weights.

You should get that the new weights are both going to be positive since the sample reward was positive and the feature value was on for both f(F, east) [since you took action east] and f'(F, east) [since you took action east, and you were on the water slide].

Now, with your new weights, you need to see which greedy policy can be possible.

For f, going East is preferred if possible (when you calculate the Q-value, any Q-state with action east has a positive value, anything else has a value of 0. Hence, throw out π_1 and π_3 , since some arrows go west.

For f', going East is preferred if you are on the slide (otherwise, everything else is just 0). All three policies contain the fact that you move east from F and G, so all policies are good.

Q3. RL

Pacman is in an unknown MDP where there are three states [A, B, C] and two actions [Stop, Go]. We are given the following samples generated from taking actions in the unknown MDP. For the following problems, assume $\gamma = 1$ and $\alpha = 0.5$.

(a) We run Q-learning on the following samples:

s	а	s'	r
Α	Go	В	2
С	Stop	Α	0
В	Stop	Α	-2
В	Go	С	-6
С	Go	Α	2
Α	Go	А	-2

What are the estimates for the following Q-values as obtained by Q-learning? All Q-values are initialized to 0.

- (i) Q(C, Stop) = 0.5
- (ii) Q(C, Go) = 1.5

For this, we only need to consider the following three samples.

$$Q(A, Go) \leftarrow (1 - \alpha)Q(A, Go) + \alpha(r + \gamma \max_{a} Q(B, a)) = 0.5(0) + 0.5(2) = 1$$

$$Q(C, Stop) \leftarrow (1 - \alpha)Q(C, Stop) + \alpha(r + \gamma \max_{a} Q(A, a)) = 0.5(0) + 0.5(1) = 0.5$$

$$Q(C, Go) \leftarrow (1 - \alpha)Q(C, Go) + \alpha(r + \gamma \max_{a} Q(A, a)) = 0.5(0) + 0.5(3) = 1.5$$

- (b) For this next part, we will switch to a feature based representation. We will use two features:
 - $f_1(s, a) = 1$ • $f_2(s, a) = \begin{cases} 1 & a = \text{Go} \\ -1 & a = \text{Stop} \end{cases}$

Starting from initial weights of 0, compute the updated weights after observing the following samples:

\mathbf{S}	а	s'	r
Α	Go	В	4
В	Stop	Α	0

What are the weights after the first update? (using the first sample)

(i) $w_1 = __2$

(ii) $w_2 = __2$

$$Q(A, Go) = w_1 f_1(A, Go) + w_2 f_2(A, Go) = 0$$

difference = $[r + max_a Q(B, a)] - Q(A, Go) = 4$
 $w_1 = w_1 + \alpha (difference) f_1 = 2$
 $w_2 = w_2 + \alpha (difference) f_2 = 2$

What are the weights after the second update? (using the second sample)

(iii) $w_1 = __4$

(iv) $w_2 = __0$

$$\begin{split} Q(B,Stop) &= w_1 f_1(B,Stop) + w_2 f_2(B,Stop) = 2(1) + 2(-1) = 0\\ Q(A,Go) &= w_1 f_1(A,Go) + w_2 f_2(A,Go) = 2(1) + 2(1) = 4\\ difference &= [r + max_a Q(A,a)] - Q(B,Stop) = [0+4] - 0 = 4\\ w_1 &= w_1 + \alpha (difference) f_1 = 4\\ w_2 &= w_2 + \alpha (difference) f_2 = 0 \end{split}$$