Regular Discussion 9

Q1. Bayes' Nets Sampling

Assume the following Bayes' net, and the corresponding distributions over the variables in the Bayes' net:

(a) You are given the following samples:

$$
\begin{array}{llllllll}
+a & +b & -c & -d & +a & -b & -c & +d \\
+a & -b & +c & -d & +a & +b & +c & -d \\
-a & +b & +c & -d & -a & +b & -c & +d \\
-a & -b & +c & -d & -a & -b & +c & -d
\end{array}
$$

(i) Assume that these samples came from performing Prior Sampling, and calculate the sample estimate of $P(+c)$.
(ii) Now we will estimate $P(+c \mid+a,-d)$. Above, clearly cross out the samples that would not be used when doing Rejection Sampling for this task, and write down the sample estimate of $P(+c \mid+a,-d)$ below.
(b) Using Likelihood Weighting Sampling to estimate $P(-a \mid+b,-d)$, the following samples were obtained. Fill in the weight of each sample in the corresponding row.
Sample
Weight

$$
\begin{array}{lllll}
-a & +b & +c & -d & \square \\
+a & +b & +c & -d & \square \\
+a & +b & -c & -d & \\
-a & +b & -c & -d & \\
\hline
\end{array}
$$

(c) From the weighted samples in the previous question, estimate $P(-a \mid+b,-d)$.
(d) Which query is better suited for likelihood weighting, $P(D \mid A)$ or $P(A \mid D)$? Justify your answer in one sentence.
(e) Recall that during Gibbs Sampling, samples are generated through an iterative process.

Assume that the only evidence that is available is $A=+a$. Clearly fill in the circle(s) of the sequence(s) below that could have been generated by Gibbs Sampling.

Sequence 1

$1:$	$+a$	$-b$	$-c$	$+d$
$2:$	$+a$	$-b$	$-c$	$+d$
$3:$	$+a$	$-b$	$+c$	$+d$

Sequence 3

$1:$	$+a$	$-b$	$-c$	$+d$
$2:$	$+a$	$-b$	$-c$	$-d$
$3:$	$+a$	$+b$	$-c$	$-d$

Sequence 2

$1:$	$+a$	$-b$	$-c$	$+d$
$2:$	$+a$	$-b$	$-c$	$-d$
$3:$	$-a$	$-b$	$-c$	$+d$

Sequence 4

$1:$	$+a$	$-b$	$-c$	$+d$
$2:$	$+a$	$-b$	$-c$	$-d$
$3:$	$+a$	$+b$	$-c$	$+d$

2 Decision Networks and VPI

A buyer is deciding whether to buy a certain used car. The car may be good quality $(Q=+q)$ or bad quality $(Q=-q)$. A test (T$)$ costs $\$ 50$ and can help to figure out the quality of the car. There are only two outcomes for the test: $\mathrm{T}=$ pass or $\mathrm{T}=$ fail. The car costs $\$ 1,500$, and its market value is $\$ 2,000$ if it is good quality; if not, $\$ 700$ in repairs will be needed to make it good quality. The buyer's estimate is that the car has 70% chance of being good quality.

1. Calculate the expected net gain from buying the car, given no test.
2. Tests can be described by the probability that the car will pass or fail the test given that the car is in good or bad shape. We have the following information:

$$
\begin{array}{r}
P(T=\operatorname{pass} \mid Q=+q)=0.9 \\
P(T=\operatorname{pass} \mid Q=\neg q)=0.2
\end{array}
$$

Calculate the probability that the car will pass (or fail) its test, and then the probability that it is in good (or bad) shape given each possible test outcome.
3. Calculate the optimal decisions given either a pass or a fail, and their expected utilities.
4. Calculate the value of (perfect) information of the test. Should the buyer pay for a test?

