1 HMMs

Consider the following Hidden Markov Model. O_{1} and O_{2} are supposed to be shaded.

W_{1}	$P\left(W_{1}\right)$
0	0.3
1	0.7

W_{t}	W_{t+1}	$P\left(W_{t+1} \mid W_{t}\right)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_{t}	O_{t}	$P\left(O_{t} \mid W_{t}\right)$
0	a	0.9
0	b	0.1
1	a	0.5
1	b	0.5

Suppose that we observe $O_{1}=a$ and $O_{2}=b$.
Using the forward algorithm, compute the probability distribution $P\left(W_{2} \mid O_{1}=a, O_{2}=b\right)$ one step at a time.
(a) Compute $P\left(W_{1}, O_{1}=a\right)$.
$P\left(W_{1}, O_{1}=a\right)=P\left(W_{1}\right) P\left(O_{1}=a \mid W_{1}\right)$
$P\left(W_{1}=0, O_{1}=a\right)=(0.3)(0.9)=0.27$
$P\left(W_{1}=1, O_{1}=a\right)=(0.7)(0.5)=0.35$
(b) Using the previous calculation, compute $P\left(W_{2}, O_{1}=a\right)$.
$P\left(W_{2}, O_{1}=a\right)=\sum_{w_{1}} P\left(w_{1}, O_{1}=a\right) P\left(W_{2} \mid w_{1}\right)$
$P\left(W_{2}=0, O_{1}=a\right)=(0.27)(0.4)+(0.35)(0.8)=0.388$
$P\left(W_{2}=1, O_{1}=a\right)=(0.27)(0.6)+(0.35)(0.2)=0.232$
(c) Using the previous calculation, compute $P\left(W_{2}, O_{1}=a, O_{2}=b\right)$.
$P\left(W_{2}, O_{1}=a, O_{2}=b\right)=P\left(W_{2}, O_{1}=a\right) P\left(O_{2}=b \mid W_{2}\right)$
$P\left(W_{2}=0, O_{1}=a, O_{2}=b\right)=(0.388)(0.1)=0.0388$
$P\left(W_{2}=1, O_{1}=a, O_{2}=b\right)=(0.232)(0.5)=0.116$
(d) Finally, compute $P\left(W_{2} \mid O_{1}=a, O_{2}=b\right)$.

Renormalizing the distribution above, we have
$P\left(W_{2}=0 \mid O_{1}=a, O_{2}=b\right)=0.0388 /(0.0388+0.116) \approx 0.25$
$P\left(W_{2}=1 \mid O_{1}=a, O_{2}=b\right)=0.116 /(0.0388+0.116) \approx 0.75$

2 Particle Filtering

Let's use Particle Filtering to estimate the distribution of $P\left(W_{2} \mid O_{1}=a, O_{2}=b\right)$. Here's the HMM again. O_{1} and O_{2} are supposed to be shaded.

W_{1}	$P\left(W_{1}\right)$
0	0.3
1	0.7

W_{t}	W_{t+1}	$P\left(W_{t+1} \mid W_{t}\right)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_{t}	O_{t}	$P\left(O_{t} \mid W_{t}\right)$
0	a	0.9
0	b	0.1
1	a	0.5
1	b	0.5

We start with two particles representing our distribution for W_{1}.
$P_{1}: W_{1}=0$
$P_{2}: W_{1}=1$
Use the following random numbers to run particle filtering:
$[0.22,0.05,0.33,0.20,0.84,0.54,0.79,0.66,0.14,0.96]$
(a) Observe: Compute the weight of the two particles after evidence $O_{1}=a$.
$w\left(P_{1}\right)=P\left(O_{t}=a \mid W_{t}=0\right)=0.9$
$w\left(P_{2}\right)=P\left(O_{t}=a \mid W_{t}=1\right)=0.5$
(b) Resample: Using the random numbers, resample P_{1} and P_{2} based on the weights.

We now sample from the weighted distribution we found above. Using the first two random samples, we find:
$P_{1}=\operatorname{sample}($ weights, 0.22$)=0$
$P_{2}=\operatorname{sample}($ weights, 0.05$)=0$
(c) Predict: Sample P_{1} and P_{2} from applying the time update.
$P_{1}=\operatorname{sample}\left(P\left(W_{t+1} \mid W_{t}=0\right), 0.33\right)=0$
$P_{2}=\operatorname{sample}\left(P\left(W_{t+1} \mid W_{t}=0\right), 0.20\right)=0$
(d) Update: Compute the weight of the two particles after evidence $O_{2}=b$.
$w\left(P_{1}\right)=P\left(O_{t}=b \mid W_{t}=0\right)=0.1$
$w\left(P_{2}\right)=P\left(O_{t}=b \mid W_{t}=0\right)=0.1$
(e) Resample: Using the random numbers, resample P_{1} and P_{2} based on the weights.

Because both of our particles have $X=0$, resampling will still leave us with two particles with $X=0$.
$P_{1}=0$
$P_{2}=0$
(f) What is our estimated distribution for $P\left(W_{2} \mid O_{1}=a, O_{2}=b\right)$?

$$
\begin{aligned}
& P\left(W_{2}=0 \mid O_{1}=a, O_{2}=b\right)=2 / 2=1 \\
& P\left(W_{2}=1 \mid O_{1}=a, O_{2}=b\right)=0 / 2=0
\end{aligned}
$$

