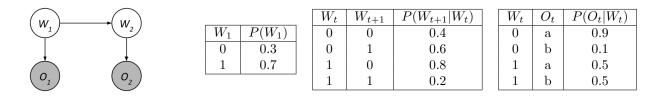
Regular Discussion 10 Solutions

1 HMMs

5 188 11 2023

Consider the following Hidden Markov Model. O_1 and O_2 are supposed to be shaded.



Suppose that we observe $O_1 = a$ and $O_2 = b$. Using the forward algorithm, compute the probability distribution $P(W_2|O_1 = a, O_2 = b)$ one step at a time.

(a) Compute $P(W_1, O_1 = a)$.

$$\begin{split} P(W_1,O_1=a) &= P(W_1)P(O_1=a|W_1)\\ P(W_1=0,O_1=a) &= (0.3)(0.9) = 0.27\\ P(W_1=1,O_1=a) &= (0.7)(0.5) = 0.35 \end{split}$$

(b) Using the previous calculation, compute $P(W_2, O_1 = a)$.

$$\begin{split} P(W_2,O_1=a) &= \sum_{w_1} P(w_1,O_1=a) P(W_2|w_1) \\ P(W_2=0,O_1=a) &= (0.27)(0.4) + (0.35)(0.8) = 0.388 \\ P(W_2=1,O_1=a) &= (0.27)(0.6) + (0.35)(0.2) = 0.232 \end{split}$$

(c) Using the previous calculation, compute $P(W_2, O_1 = a, O_2 = b)$.

$$\begin{split} P(W_2, O_1 = a, O_2 = b) &= P(W_2, O_1 = a) P(O_2 = b | W_2) \\ P(W_2 = 0, O_1 = a, O_2 = b) &= (0.388)(0.1) = 0.0388 \\ P(W_2 = 1, O_1 = a, O_2 = b) &= (0.232)(0.5) = 0.116 \end{split}$$

(d) Finally, compute $P(W_2|O_1 = a, O_2 = b)$.

Renormalizing the distribution above, we have $P(W_2 = 0 | O_1 = a, O_2 = b) = 0.0388/(0.0388 + 0.116) \approx 0.25$ $P(W_2 = 1 | O_1 = a, O_2 = b) = 0.116/(0.0388 + 0.116) \approx 0.75$

2 Particle Filtering

Let's use Particle Filtering to estimate the distribution of $P(W_2|O_1 = a, O_2 = b)$. Here's the HMM again. O_1 and O_2 are supposed to be shaded.

$(W_{i}) \rightarrow (W_{i})$		W_t	W_{t+1}	$P(W_{t+1} W_t)$	[W_t	O_t	$P(O_t W_t)$
	$W_1 \mid P(W_1)$	0	0	0.4		0	a	0.9
	0 0.3	0	1	0.6		0	b	0.1
$\mathbf{\dot{\mathbf{+}}}$	1 0.7	1	0	0.8		1	a	0.5
(O_1) (O_2)		1	1	0.2		1	b	0.5

We start with two particles representing our distribution for W_1 . $P_1: W_1 = 0$ $P_2: W_1 = 1$ Use the following random numbers to run particle filtering:

[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]

- (a) Observe: Compute the weight of the two particles after evidence $O_1 = a$.
 - $w(P_1) = P(O_t = a | W_t = 0) = 0.9$ $w(P_2) = P(O_t = a | W_t = 1) = 0.5$
- (b) Resample: Using the random numbers, resample P_1 and P_2 based on the weights.

We now sample from the weighted distribution we found above. Using the first two random samples, we find: $P_1 = sample(weights, 0.22) = 0$ $P_2 = sample(weights, 0.05) = 0$

- (c) **Predict**: Sample P_1 and P_2 from applying the time update.

 $P_1 = sample(P(W_{t+1}|W_t = 0), 0.33) = 0$ $P_2 = sample(P(W_{t+1}|W_t = 0), 0.20) = 0$

(d) Update: Compute the weight of the two particles after evidence $O_2 = b$.

 $w(P_1) = P(O_t = b | W_t = 0) = 0.1$ $w(P_2) = P(O_t = b | W_t = 0) = 0.1$

(e) **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights.

Because both of our particles have X = 0, resampling will still leave us with two particles with X = 0. $P_1 = 0$ $P_2 = 0$

 $\mathbf{2}$

(f) What is our estimated distribution for $P(W_2|O_1 = a, O_2 = b)$?

 $\begin{array}{l} P(W_2=0|O_1=a,O_2=b)=2/2=1\\ P(W_2=1|O_1=a,O_2=b)=0/2=0 \end{array}$