Announcements

Project O (optional) is due Tuesday, January 24, 11:59 PM PT
HWO (optional) is due Friday, January 27, 11:59 PM PT
Project 1 is due Tuesday, January 31, 11:59 PM PT

HW1 is due Friday, February 3, 11:59 PM PT

CS 188: Artificial Intelligence

Informed Search

Fall 2022

University of California, Berkeley

Today

" Informed Search
= Heuristics
" Greedy Search
" A* Search

" Graph Search

Recap: Search

Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n+3.

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

\ Ve N
Action: flip top two A{ Path to reach goal:
Cost: 2 Flip four, flip three

Total cost: 7

Informed Search

Search Heuristics

= A heuristic is:

A function that estimates how close a state is to a goal
Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing

——

Heuriski - Tron \

L

=
Heuristi - Tron J

e ——

Example: Heuristic Function

] Vaslui

Timisoara

142

11 Pitesti

98

] Hirsova

86

] Mehadia Urziceni

75

Dobreta [J

L Craiova Eforie

[] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Gtra ight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

h(x)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Greedy Search

Greedy Search

= Expand the node that seems closest...

Arad

Sibiu

329

380 193

366
253 0

= What can go wrong?

] Mehadia
75

Dobreta [J

Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

A* Search

A* Search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

h=1

= No: only stop when we dequeue a goal

Is A* Optimal?

h=6

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!

Admissible Heuristics

GE |
st (N YAY

e ————
4--&\
ol
e eeese——

Heuristi = Tron

|

N ——

ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs

Admissible Heuristics
= A heuristic h is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

4 |

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

= Ais an optimal goal node
" Bisasuboptimal goal node
" hisadmissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:

" |magine B is on the fringe

= Some ancestor n of Ais on the
fringe, too (maybe Al)

= Claim: n will be expanded before B

1. f(n) is less or equal to f(A) &

f(n) =g(n) + h(n)
f(n) <g(A)
g(A) = f(A)

.

Definition of f-cost

Admissibility of h
h =0 at a goal

/

Optimality of A* Tree Search: Blocking

1. f(n) is less than or equal to f(A)

= Definition of f-cost says:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)

= The admissible heuristic must underestimate the true cost A
h(A) = (est. costof Ato A) =0

= So now, we have to compare:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) = (path cost to A)

®= h(n) must be an underestimate of the true cost from n to A
(path cost to n) + (est. cost of n to A) < (path cost to A)

g(n) +h(n) < g(A)
f(n) < f(A)

~a_

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A)isless than f(B)x

.

9(A) <g(B)
f(A) < f(B)

B is suboptimal
h =0 at a goal

~

/

Optimality of A* Tree Search: Blocking

2. f(A)is less than f(B)

= We know that:
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)
f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)

= The heuristic must underestimate the true cost: A
h(A)=h(B)=0

= So now, we have to compare:
f(A) = g(A) = (path cost to A)
f(B) = g(B) = (path cost to B)

= We assumed that B is suboptimal! So
(path cost to A) < (path cost to B)

g(A) < g(B)
f(A) < f(B)

~-_

Optimality of A* Tree Search: Blocking

Proof:

" |magine B is on the fringe

Some ancestor n of Ais
fringe, too (maybe Al)

Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A)is less than f(B)

All ancestors of A expan

on the

3. nexpands before B B
dmL f(n) < f(A) < £(B) J

A expands before B
A* search is optimal

Properties of A*

Properties of A*

Uniform-Cost

UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
St Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A* Applications

= Video games

Pathing / routing problems
Resource planning problems
Robot motion planning

Language analysis
Machine translation
Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Creating Heuristics

YOU GOT

HEURISTIL
UFGRADE!

Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

= |nadmissible heuristics are often useful too

Example: 8 Puzzle

7 2 4 37|1
5 & 1Y) N2 /4|5
8 3 1 S8 6

Start State Actions

—————

What are the states?

How many states?

What are the actions?

How many successors from the start state?
What should the costs be?

!

3
&

p)
|5
7 |®

Goal State

8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

Statistics from Andrew Moore

8 Puzzle Il

What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

Total Manhattan distance

Start State

Why is it admissible?

h(start)= 3+1+2+..=18

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73

8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

" Would we save on nodes expanded?
* What’s wrong with it? ij /t

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

= Dominance: h, > h_if

Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:

= Max of admissible heuristics is admissible

h(n) = maz(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

max(hg, hy)

Graph Search

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \

-~

A e
4 N
l ,.Y

B ===
Y. .Y
/7 N
! '
\ i

D = :.: — -\

Search Tree

A @

~

Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

d e p

N |

b/m h r q
| /@ |

r f

- @@L

f g ¢ G
N !
G a

C
I
a

Graph Search

ldea: never expand a state twice

How to implement:

= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list
Can graph search wreck completeness? Why/why not?

How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

S (0+2)

~—

A (1+4) B(1+1)

! !

C (2+1) C (3+1)

} }

G (5+0) G (6+0)

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost fromAto G
= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Optimality of A* Graph Search

Optimality

Tree search:
= A* s optimal if heuristic is admissible
= UCS s a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* js optimal with admissible / consistent heuristics

" Heuristic design is key: often use relaxed problems

Search and Models

= Search operates over
models of the world

" The agent doesn’t
actually try all the plans
out in the real world!

" Planning is all “in
simulation”

" Your search is only as
good as your models...

Search Gone Wrong?

B MAPQVEST [= a
’ ' |) =
5.2 Q 15 g Ly ICELAND
P - = g @— o x Z
A Brerave 8 8 & 3
s Tz R RUSSIA
\S >3 & 2 ATE ANTIC i
\ = [i
| - () Hae B
T ' ® o 2 g : HEEE%F_FH:
x> 3 G & .
/@ 2 3 3 "0, Srilensk
// @ 9 ©, © Vilnius _~ Gin
, g (?’ aiwﬂaﬂ‘ﬁ%ﬂnnﬂs}f
v/ Ea" St 2 @ b %

POLAND i~ Kiev,

¢ ROMAHIA =

1000

200 400 AO0
Start: Haugesund, Rogaland, Morway
» 2005 MapQuest. f End: Trondheim, Sar-Trandelag, Monway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk.no/alltidmoro

Search Gone Wrong?

- MAPQVEST.

MOIN

ICELAND

[®PiH
S
eq

Ei L.,

Ve f.?.n.x_r

1 Yilnius _~ B
ckomil o

¥ i
Eialf?'g;{.f.[{é’{'BELARUSr'U'
POLAHD -’mqr’ Kievy

)

1000

<
~ e e pEe
\7 200 400 AO0

,.,,6)

Fhg S

Start: Haugesund, Rogaland, Morway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

» 2005 MapQ .com, Inc.

nrk.no/alltidmoro

Appendix: Search Pseudo-Code

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe ¢ INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE|node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe < INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed +— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE[node|, problem) do
fringe < INSERT(child-node, fringe)
end
end

