CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Fall 2023

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

What is Search For?

= Assumptions about the world: a single agent, deterministic actions, fully observed

state, discrete state space
F “‘
o0l %ﬁ’
AT
7 v
5 .,.?ﬁ_wl

" Planning: sequences of actions
= The path to the goal is the important thing
= Paths have various costs, depths

= Heuristics give problem-specific guidance

= |dentification: assignments to variables
= The goal itself is important, not the path
= All paths at the same depth (for some formulations)
= (CSPs are a specialized class of identification problems

Constraint Satisfaction Problems

=

Constraint Satisfaction Problems

Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

Constraint satisfaction problems (CSPs):
= A special subset of search problems

= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

= Goal testis a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T

Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA = NT

Explicit: (WA,NT) € {(red,green), (red, blue), ...}

Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}

Example: N-Queens

" Formulation 1:
" Variables: X,
"= Domains: {0,1}
= Constraints

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi, 4, k (Xij,ij) € {(0,0),(0,1),(1,0)} ZXij —
Vi, j, k (Xij, Xitk j+k) € 1(0,0),(0,1),(1,0)} .
Vi, j, k (X5, Xixkj—k) € 1(0,0),(0,1),(1,0)}

Example: N-Queens

= Formulation 2:

Q1

» Variables: Qg Q2
| Q3

" Domains: {1,2,3,...N} Qa

" Constraints:

Implicit: V4,5 non-threatening(Q;, @;)

Explicit: (Q1,Q»2) € {(1,3),(1,4),...}

Constraint Graphs

Constraint Graphs

= Binary CSP: each constraint relates (at most) two @

variables e
o]~

= Binary constraint graph: nodes are variables, arcs
show constraints

= General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Example: Cryptarithmetic

= \/ariables:

FTUWRO X1 Xo X3
= Domains:
{0,1,2,3,4,5,6,7,8,9}
= Constraints:

alldiff(F. T, U, W, R, O)

O+0=R+10- X4

Example: Sudoku

= Variables:

= Each (open) square
= Domains:

= {1,2,..,9}

= Constraints:

9-way alldiff for each column

9-way alldiff for each row

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

Example: The Waltz Algorithm

= The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects

= An early example of an Al computation
posed as a CSP

= Approach:
= Each intersection is a variable

= Adjacent intersections impose constraints
on each other

= Solutions are physically realizable 3D
interpretations

Varieties of CSPs and Constraints

Varieties of CSPs

= Dijscrete Variables
" Finite domains

= Size d means O(d") complete assignments

= E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

* |nfinite domains (integers, strings, etc.)
= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g., start/end times for Hubble Telescope observations

= Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)

Varieties of Constraints

= Varieties of Constraints

= Unary constraints involve a single variable (equivalent to
reducing domains), e.g.:

SA # green
= Binary constraints involve pairs of variables, e.g.:

SA £ WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g., redis better than green
= Often representable by a cost for each variable assignment
= @Gives constrained optimization problems
= (WEe'll ignore these until we get to Bayes’ nets)

Real-World CSPs

Scheduling problems: e.g., when can we all meet?
Timetabling problems: e.g., which class is offered when and where?
Assignment problems: e.g., who teaches what class

Hardware configuration
Transportation scheduling

Factory scheduling

Circuit layout

Fault diagnosis A o

... lots more!

Many real-world problems involve real-valued variables...

Solving CSPs

AU

Standard Search Formulation

= Standard search formulation of CSPs

= States defined by the values assigned
so far (partial assignments)
" |nitial state: the empty assignment, {}

= Successor function: assign a value to an
unassigned variable

= Goal test: the current assignment is
complete and satisfies all constraints

= We'll start with the straightforward,
naive approach, then improve it

Search Methods

= \What would BFS do?

= \What would DFS do?

= What problems does naive search have? @

[Demo: coloring -- dfs]

Backtracking Search

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assignments are commutative, so fix ordering
= |.e., [WA=redthen NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

ldea 2: Check constraints as you go
= |.e. consider only values which do not conflict with previous assignments
= Might have to do some computation to check the constraints
= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Backtracking Example

e

A

- ¢ &
—
"o

&S

Foos

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var«— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

= Backtracking = DFS + variable-ordering + fail-on-violation
* What are the choice points?

[Demo: coloring -- backtracking]

Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
= Which variable should be assigned next?
" |n what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

Filtering

Filtering: Forward Checking

" Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
WA NT| Q
SA NSW.
Vv

WA NT Q NSW Vv SA

[Demo: coloring -- forward checking]

Filtering: Constraint Propagation

= Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q NSW Vv SA
VT i T Ir I IrE IrE I
‘ A T]| 'EECEECEECE] UE
b I Tl 1L I

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
" Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

An arc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

NT [WA NT Q NSW Vv SA
‘ A C I T I 1T I
v
Vv

Tail = NT, head = WA
= |f NT = blue: we could assign WA = red
= |f NT = green: we could assign WA = red
= |f NT = red: there is no remaining assignment to WA that we can use
= Deleting NT = red from the tail makes this arc consistent

Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP (1/6)

= Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [H E[ETN] 1
\Y v

= ArcV to NSW is consistent: for every x in the tail there is some y in the head which
could be assigned without violating a constraint

Arc Consistency of an Entire CSP (2/6)

= Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [H E[ETN] 1
Vv _/

= Arc SA to NSW is consistent: for every x in the tail there is some y in the head which
could be assigned without violating a constraint

Arc Consistency of an Entire CSP (3/6)

= Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [H E[ETN] 1
\Y _/

= Arc NSW to SA is not consistent: if we assign NSW = blue, there is no valid assignment
left for SA

= To make this arc consistent, we delete NSW = blue from the tail

Arc Consistency of an Entire CSP (4/6)

= Asimple form of propagation makes sure all arcs are consistent:

NT* WA NT Q NSW Y SA
A Tw I | (1T 1 1
\Y v

= Remember that arc V to NSW was consistent, when NSW had red and blue in its
domain

= After removing blue from NSW, this arc might not be consistent anymore! We need to
recheck this arc.

= |mportant: If X loses a value, neighbors of X need to be rechecked!

Arc Consistency of an Entire CSP (5/6)

= Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 C | 1 1
Vv \ /

= Arc SA to NT is inconsistent. We make it consistent by deleting from the tail (SA = blue).

Arc Consistency of an Entire CSP (6/6)

= Asimple form of propagation makes sure all arcs are consistent:

¢

= SA has an empty domain, so we detect failure. There is no way to solve this CSP with
WA =red and Q = green, so we backtrack.

" Arc consistency detects failure earlier than forward checking
= Can berun as a preprocessor or after each assignment

WA NT Q NSW Vv SA

- *
SA

NSW
V.

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xy, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;, X;) then
for each X} in NEIGHBORS[.X] do
add (X, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed < false
for each z in DoMAIN[X;] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete 2 from DOMAIN[X;]; removed — true
return removed

= Runtime: O(n%d3), can be reduced to O(n?%d?)
= ... but detecting all possible future problems is NP-hard — why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

= After enforcing arc
consistency:

= Can
= Can
= Can

nave one solution left

nave multiple solutions left

nave no solutions left (and

not know it)

= Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]

