Announcements

" Homework 2 due today (Sept 19) at 11:59pm PT

" Project 2 due this Friday (Sept 22) at 11:59pm PT

CS 188: Artificial Intelligence

Markov Decision Processes |

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Preview of Next Two Weeks

How to act only . Learn reflex /
in current Search & Remforcgment ‘ policy to act in
situation Planning Learning any situation

Probability & Supervised
Inference Learning

= This week: value iteration and policy iteration

" Assumes we can query model of the world

= Next week: learning from trial and error

" Learn only from interactions with the world

Examples of (Deep) Reinforcement Learning

2013: Playing Atari games

000000
SECTIR O1

Pong

[Human-level control through deep reinforcement learning. Mnih et al. Nature 2015]

Examples of (Deep) Reinforcement Learning

2015: Locomotion from trial and error

lteration O

[Trust Region Policy Optimization. Schulman et al. ICLR 2015]

Examples of (Deep) Reinforcement Learning

2016: Playing Go (and beating human champion)

[Mastering the game of Go with deep neural networks and tree search. Silver et al. Nature 2016]

Examples of (Deep) Reinforcement Learning

2019: Robot manipulation

[Solving Rubik's cube with a robot hand. OpenAl. 2019]

Examples of (Deep) Reinforcement Learning

2022: Nuclear fusion plasma control

Photo Credits: DeepMind and SPC/EPFL

0.09s
)
(I

View from inside the tokamak Plasma state reconstruction

[Magnetic control of tokamak plasmas through deep reinforcement learning. Degrave et al. Nature 2022]

Examples of (Deep) Reinforcement Learning

2022: Training Language Models with Human Feedback

[Aligning language models to follow instructions. Ouyang et al. 2022]

Examples of (Deep) Reinforcement Learning

2022: Economic policy design?

Planner 1. Observes 2. Decides 3. Optimizes Al planner @ Episode n Episode n +1
Market price Set tax rates Social welfare 50% 2004 L
Tax rates of? . 5 5
X i& . Effective taxrates 20% | 399% 1
Agent inventories : | —
B
- Agents 1. Observe 2. Decide *—————> 3. Optimize o Taxpaid < Posttax incomes < —
Neighborhood A lannsr Move/gather | Posttax utility | : ‘
Inventory Buy/sell i :
= o i) ! ~ 7
Skill level Build L Agent & 02 o N2 021 oo 02T
Market price : ‘ 100 90
Tax rate "
L Adapting to |each other |] :
L Agent @ Mo G102 121t Ul tel
2> Coin 4& Wood 200 180 :

© Stone ™ House

Equality (x) == Productivity () -

Social welfare

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |f thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

= An MDP is defined by:

m Asetofstatess €S
= Aset of actionsa € A

= A transition function T(s, a, s’)
= Probability that a from s leads to s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s')
= Sometimes just R(s) or R(s’)

= A start state

= Maybe a terminal state

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = Sl\St — StaAt = Ay, Si—1 = St—1,At—1, ...50 = So)

Andrey Markov
P(St_|_1 = S"St = S¢, At = Clt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy n*: S - A

= A policy t gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Expectimax didn’t compute entire policies
= |t computed the action for a single state only

Optimal Policies

o N
T Il
= ©
I~ o

Example: Racing

Example: Racing

= A robot car wants to travel far, quickly
= Three states: Cool, Warm, Overheated

0.5
= Two actions: Slow, Fast

= Going faster gets double reward

Slow

Overheated

n*(Cool) = Fast
Optimal Policy: =*(Warm) = Slow
n*(Overheated) = end

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

As — S iS a State

~

\e /—> (s,a,s’) called a transition
T(s,a,s’) =P(s’|s,a)
" R(s,a,s)
N\

Utilities of Sequences

Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, O, 1] or [1,0,0]

Discounting

" |t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

* Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3]) =1*1+0.5*2 +0.25*3 = 2.75
= U([3,2,1]) =1*3 +0.5*2 + 0.25*1 =5.25
= U([1,2,3]) < U([3,2,1])

Discounting in Public Policy

COUNCIL OoF EcoONOMIC ADVISERS ISSUE BRIEF
JANUARY 2017

DISCOUNTING FOR PUBLIC POLICY:
THEORY AND RECENT EVIDENCE ON THE MERITS OF
UPDATING THE DISCOUNT RATE

Weighing benefits and costs that take place over time requires discounting those amounts to present value equivalents.
This necessitates selecting a discount rate which can adjust for the fact that resources are more valuable today than in
the future if consumers prefer to consume today rather than wait, or if firms could be earning a positive return on
invested resources. Current guidance from the office of management and budget requires using both a 7 percent and 3
percent real discount rate in regulatory benefit-cost analyses. This issue brief reassesses the current choice of discount
rates and methodologies for selecting the 3 percent and 7 percent rates. Empirical evidence suggests that real interest
rates around the world have come down since the last evaluation of the rates, and new theoretical advances considering
future uncertainty likely suggest lower long term rates, as well. In general the evidence supports lowering these discount
rates, with a plausible best guess based on the available information being that the lower discount rate should be at
most 2 percent while the upper discount rate should also likely be reduced.

0.93
or
0.97

obamawhitehouse.archives.gov/sites/default/files/page/files/201701_cea_ discounting_issue_brief.pdf

Quiz: Discounting

Given: 10 1

a b C d e
= Actions: East, West, and Exit (only available in exit states a, e)

= Transitions: deterministic

Quiz 1: For y =1, what is the optimal policy? 10

Quiz 2: For y=0.1, what is the optimal policy? 10

Quiz 3: For which y are West and East equally good when in state d?

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

Shaunae Miller wins 400m gold medal in 2016 Olympics [Photo credit: NBC]

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Discounting:use0O<y<1

U([ro,.--ro0)) = > v'r¢ < Rmax/(1 —7)
t=0

= Smaller y means smaller “horizon” — shorter term focus
Y

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount vy) 5,8

= MDP quantities so far:

= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

Recall: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated

0.5
Two actions: Slow, Fast

Going faster gets double reward

Slow

Overheated

1.0

Racing Search Tree

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
quantities once, cache the rest in
a lookup table

Problem: Tree goes on forever

= |dea: Do a depth-limited
computation, but with increasing
depths until change is small

= Note: deep parts of the tree
eventually don’t matterify<1

NEE RN

R CHER TR

———

-

-

-

W

FIETIRELL

LIETImEL]

Optimal Quantities

"= The value (utility) of a state s:
V*(s) = expected utility starting in s and

* sisa
acting optimally v (S) state
Ak . . (s, a)is a
* The value (utility) of a g-state (s,a): Q(s,a) @ s, oostate
Q’(s,a) = expected utility starting out N
having taken action a from state s and (s,a,5) is a
(thereafter) acting optimally transition

=" The optimal policy:
n'(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V* Values

Noise = 0.2
Discount = 0.9
Living reward =0

Snapshot of Demo — Gridworld Q* Values

D
e

PP

Snapshot of Demo — Gridworld ©* Values

Noise = 0.2
Discount = 0.9
Living reward =0

Values of States

= Recursive definition of value (similar to expectimax):

V*(s) = max Q*(s, a)

sisa
state

(s,a)isa
Q*(s,a) = ZT(S, a,s) {R(S, a,s’) + *yV*(s/)} g-state
S
(s,a,s’) is a
transition

V*(s) = mC?XZT(S,CL,S/) [R(s,a,s’) WV*(S’)}

S

= But how do we solve these equations?

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it’'s what a depth-k expectimax would give from s

= Va(@)

T

CROCR A

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Nf’ise =0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

.A.AA 'A 'AA s

NN N RN RN

VT T T | O O i VT T O O O e VOO O |

llIIIIl' I "I I1I|l||xll' - llllllll . Illllljl I|III| . III'IIA' I lxIl'

(=
(=
(=
(=

VT CRERREERI TR TR TR T

Value lteration

Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one step of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence, which yields V* s,a,8

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

Overheated

Assume no discount!
Vi

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + WVk(sl)}

S

Example: Value Iteration

Overheated

v [3] Assume no discount!
1 r

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + ’ka(S/)}

S

Vo [0 0 0] a=slow: 1(1+0)=1

a=fast: 0.5(2+0)+0.5(2+0)=2

Example: Value Iteration

Overheated

v [) 3] Assume no discount!
1 r

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + ’ka(S/)}

S

Vo [0 0 0] a=slow: 0.5(1+0)+0.5(1+0)=1

a=fast: 1(-10 + 0) =-10

Example: Value Iteration

Overheated

Assume no discount!
(2 1 o)

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + ’ka(S/)}

S

Vo [0 0 0] a=slow: 1(1+2)=3

a=fast: 0.5(2+2)+0.5(2+1)=35

Example: Value Iteration

Overheated

Assume no discount!
(2 1 o)

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + ’}/Vk(sl)}

S

Vo [0 0 0] a=slow: 0.5(1+2)+0.5(1+1)=2.5

a=fast: 1(-10 + 0) =-10

Example: Value Iteration

Overheated

7 [) 1 0] Assume no discount!
Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + WVk(sl)}

S

What we did today

* Working with stochastic environments (but world model known)
" Introduced MDPs (describe problem) and policies (solution)

= MDPs look similar to expectimax search trees

= Dijscussed how to solve MDPs

* Optimal state value V*(s), and g-state value Q*(s,a) are key quantities
" Bellman equation characterizes the optimal value function:

V*i(s) = mC?XZT(S’ a,s) {R(s, a,s’) + *yV*(s’)}

= A key equation in RL and this class!

" Value iteration is an algorithm to solve the Bellman equation

Next Time: Policy-Based Methods

