Announcements

- Project 2 due this Friday (Sept 22) at 11:59pm PT
- Igor's Office Hours: Thursdays 1-2pm PT in Soda 734 or Zoom
- https://berkeley.zoom.us/j/2939939817

CS 188: Artificial Intelligence
 Markov Decision Processes II

Today

- Review MDPs, Bellman equation, value iteration
- Policy extraction, policy evaluation, policy iteration
- All based on the Bellman equation

Recap: MDPs

- Markov decision processes:
- States S
- Actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a, s') (and discount γ)
- Start state s_{0}

Example: Grid World

- A maze-like problem
- The agent lives in a grid
- Walls block the agent's path
- Noisy movement: actions do not always go as planned
- 80% of the time, the action North takes the agent North
- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
- Small "living" reward each step (can be negative)
- Big rewards come at the end (good or bad)
- Goal: maximize sum of (discounted) rewards

Solving MDPs

Optimal Quantities

- The value (utility) of a state s:
$V^{*}(s)=$ expected utility starting in s and acting optimally
- The value (utility) of a q-state (s, a):
$Q^{*}(s, a)=$ expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
$\pi^{*}(\mathrm{~s})=$ optimal action from state s

Optimal Quantities

- The value (utility) of a state s:
$\mathrm{V}^{*}(\mathrm{~s})=$ expected utility starting in s and acting optimally
- The value (utility) of a q-state (s, a):
$Q^{*}(s, a)=$ expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:

Here $\mathrm{V}^{*}(\mathrm{~s})$ is a lookup table with 11 entries $\pi^{*}(s)=$ optimal action from state s

Optimal Quantities

- The value (utility) of a state s:
$\mathrm{V}^{*}(\mathrm{~s})=$ expected utility starting in s and acting optimally
- The value (utility) of a q-state (s, a): $Q^{*}(s, a)=$ expected utility starting out having taken action a from state s and (thereafter) acting optimally

- The optimal policy:

Here $Q^{*}(s, a)$ is a lookup table with $9 * 4+2$ entries $\pi^{*}(s)=$ optimal action from state s

Optimal Quantities

- The value (utility) of a state s:
$V^{*}(s)=$ expected utility starting in s and acting optimally
- The value (utility) of a q-state (s, a):
$Q^{*}(s, a)=$ expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:

Here $\pi^{*}(s)$ is a lookup table with 11 entries $\pi^{*}(s)=$ optimal action from state s

The Bellman Equations

- Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$
\begin{aligned}
& V^{*}(s)=\max _{a} Q^{*}(s, a) \\
& Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \\
& V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

- Start with $\mathrm{V}_{0}(\mathrm{~s})=0$: no time steps left means an expected reward sum of zero
- Given vector of $\mathrm{V}_{\mathrm{k}}(\mathrm{s})$ values, do one step of expectimax from each state:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- Repeat until convergence, which yields V^{*}

- Complexity of each iteration: $O\left(S^{2} A\right)$
- Theorem: will converge to unique optimal values
- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do

$\mathrm{k}=0$

Gridworld Display

Δ	Δ	Δ	\square
0.00	0.00	0.00	0.00
0.00		0.00	0.00
0.00	0.00	0.00	0.00

VALUES AFTER 0 ITERARIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0

Δ	Δ		\square
0.00	0.00	0.00	1.00
0.00		0.00	-1.00
Δ	$\boxed{ }$		
0.00	0.00	0.00	0.00

VALUES AFTER 1 ITERATIONS

$\mathrm{k}=1$

Δ	Δ		$(1.00$
0.00	0.00	0.00	
Δ			
0.00		0.00	-1.00
Δ	0.00	0.00	0.00
0.00			

VALUES AFTER 1 ITERARIONS

$\mathrm{k}=1$

$\begin{gathered} 0 \\ 0.00 \end{gathered}$	$\begin{gathered} 4 \\ 0.00 \end{gathered}$	0.00	$\pm .00$
$\begin{gathered} \Delta \\ 0.00 \end{gathered}$		40.00	-1.00
0.00	$\begin{gathered} \wedge \\ 0.00 \end{gathered}$	$\begin{gathered} \Delta \\ 0.00 \end{gathered}$	0.00

VALUES AFTER 1 ITERARIONS

$$
k=2
$$

$\begin{gathered} 0 \\ 0.00 \end{gathered}$	0.00	0.72	$\pm .00$
-		-	
0.00		0.00	-1.00
-	-	-	
0.00	0.00	0.00	0.00
			∇

VALUES AFTER 2 IMERARIONS

$V_{2}(s)$ is value of depth-2 expectimax from s
k=3

Gridworld Display

0.00	0.52	0.78	1.00
-		-	
0.00		0.43	-1.00
-	-	-	
0.00	0.00	0.00	0.00
			\checkmark

VALUES AFTER 3 ITERATIONS

Noise $=0.2$
Discount $=0.9$

VALUES AFTER 4 ITERARIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$\mathrm{k}=5$

0.51	0.72	0.84	1.00
-		-	
0.27		0.55	-1.00
-		-	
0.00	0.22	0.37	40.13

VALUES AFTER 5 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0

VALUES AFTER 6 ITERATIONS

Noise $=0.2$
Discount $=0.9$

0.62 ,	0.74	0.85	1.00
-		-	
0.50		0.57	-1.00
-		-	
0.34	0.36	0.45	40.24

VALUES AFTER 7 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0

VALUES AFTER 8 ITERATIONS

Noise $=0.2$
Discount $=0.9$ Living reward $=0$

0.64	0.74	0.85	1.00
-		-	
0.55		0.57	-1.00
-		-	
0.46	0.40	0.47	40.27

VALUES AFIER 9 ITERARIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0

$\mathrm{k}=10$

Gridworld Display

0.64	0.74	0.85	1.00
\triangle		\triangle	
0.56		0.57	-1.00
-		-	
0.48	40.41	0.47	40.27

VALUES AFIER 10 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0
$\mathrm{k}=11$

Gridworld Display

0.64	0.74	0.85	1.00
-		-	
0.56		0.57	-1.00
-		-	
0.48	40.42	0.47	40.27

VALUES AFIER 11 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$
$\mathrm{k}=12$

Gridworld Display

0.64	0.74	0.85	1.00
-		-	
0.57		0.57	-1.00
-		-	
0.49	40.42	0.47	40.28

VALUES AFIER 12 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$\mathrm{k}=100$

Gridworld Display

VALUES AFTER 100 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0

Example: Value Iteration

Value Iteration

- Bellman equations characterize the optimal values:

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- Value iteration computes them:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- Value iteration is just a fixed point solution method

- ... though the V_{k} vectors are also interpretable as time-limited values
- There may be other methods to solve this Bellman equation

Quiz: Bellman equation for Q values?

- We saw Bellman equation that characterized optimal $\mathrm{V}^{*}(\mathrm{~s})$

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- Can we write down Bellman equation for $Q^{*}(s, a)$?

$$
Q^{*}(s, a)=\quad \text { ??? } \quad Q^{*}\left(s^{\prime}, a^{\prime}\right)
$$

(don't look at the next slide if you're following along with the notes please :)

Quiz: Bellman equation for Q values?

- We saw Bellman equation that characterized optimal $\mathrm{V}^{*}(\mathrm{~s})$

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- Can we write down Bellman equation for $Q^{*}(s, a)$?

$$
Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)\right]
$$

- Leads to Q-Value iteration algorithm we'll see next week

The Bellman Equations

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values $\mathrm{V}^{*}(\mathrm{~s})$
- How should we act?
- It's not obvious!
- We need to do a mini-expectimax (one step)

$$
\pi^{*}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \begin{aligned}
& \operatorname{ex}: \\
& \max [0.5,1.7,1.2]=1.7 \\
& \operatorname{argmax}[0.5,1.7,1.2]=1
\end{aligned}
$$

- This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
- Completely trivial to decide!

$$
\pi^{*}(s)=\arg \max _{a} Q^{*}(s, a)
$$

- Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

- Value iteration repeats the Bellman updates:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- Problem 1: It's slow $-O\left(S^{2} A\right)$ per iteration

- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values
$\mathrm{k}=12$

Gridworld Display

0.64	0.74	0.85	1.00
-		-	
0.57		0.57	-1.00
-		-	
0.49	40.42	0.47	40.28

VALUES AFIER 12 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$\mathrm{k}=100$

Gridworld Display

VALUES AFTER 100 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action

Do what π says to do

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler - only one action per state
- ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Define the utility of a state s, under a fixed policy π :
$\mathrm{V}^{\pi}(\mathrm{s})=$ expected total discounted rewards starting in s and following π
- What is the recursive relation (one-step look-ahead / Bellman equation)?
- Hint: recall Bellman equation for optimal policy:

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

Utilities for a Fixed Policy

- Define the utility of a state s, under a fixed policy π :
$\mathrm{V}^{\pi}(\mathrm{s})=$ expected total discounted rewards starting in s and following π
- What is the recursive relation (one-step look-ahead / Bellman equation)?
- Hint: recall Bellman equation for optimal policy:

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- Answer:

$$
V^{\pi}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]
$$

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$
\begin{aligned}
& V_{0}^{\pi}(s)=0 \\
& V_{k+1}^{\pi}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

$$
, s, \pi(s), s^{\prime}
$$

- Efficiency: $O\left(S^{2}\right)$ per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
- Solve with your favorite linear system solver

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

Always Go Forward

Policy Iteration

Policy Iteration

- Evaluation: For fixed current policy π, find values with policy evaluation:
- Iterate until values converge:

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi_{i}(s), s^{\prime}\right)\left[R\left(s, \pi_{i}(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

- End up with value function $V^{\pi_{i}}$
- Improvement: For fixed values, get a better policy using policy extraction
- One-step look-ahead:

$$
\pi_{i+1}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

- Repeat steps until policy converges

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
- Compute optimal values: use value iteration or policy iteration

or

- Compute values for a particular policy: use policy evaluation

- Turn your values into a policy: use policy extraction (one-step lookahead)

Summary: MDP Algorithms

- So you want to....
- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
- They basically are - they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

Summary: Bellman Equation Zoo!

- Optimal V and Q value functions:

$$
\begin{aligned}
& V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \quad V^{*}(s)=\max _{a} Q^{*}(s, a) \\
& Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

- Value function for fixed policy π :

$$
V^{\pi}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]
$$

- Policy π for V and Q value functions:

$$
\begin{aligned}
& \pi^{*}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \\
& \pi^{*}(s)=\arg {\underset{a}{a}}^{\max } Q^{*}(s, a)
\end{aligned}
$$

The Bellman Equations

Next Time: Reinforcement Learning!

Extra Time: Convergence*

- How do we know the V_{k} vectors are going to converge?
- Proof sketch (assuming discount $0<\gamma<1$):
- For any state V_{k} and $\mathrm{V}_{\mathrm{k}+1}$ can be viewed as depth $\mathrm{k}+1$ expectimax results in nearly identical search trees
- The difference is that on the bottom layer, $\mathrm{V}_{\mathrm{k}+1}$ has actual rewards while V_{k} has zeros
- That last layer is at best all $\mathrm{R}_{\text {MAX }}$
- It is at worst $\mathrm{R}_{\text {MIN }}$
- But everything is discounted by γ^{k} that far out
- So V_{k} and V_{k+1} are at most $\gamma^{k} \max |R|$ different
- So as k increases, the values converge

