Announcements

- Project 2 due this Friday (Sept 22) at 11:59pm PT
- Igor's Office Hours: Thursdays 1-2pm PT in Soda 734 or Zoom
 - https://berkeley.zoom.us/j/2939939817

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

- Review MDPs, Bellman equation, value iteration
- Policy extraction, policy evaluation, policy iteration
 - All based on the Bellman equation

Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
 - Start state s₀

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of (discounted) rewards

Solving MDPs

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
 - (thereafter) acting optimally
- The optimal policy:
 π^{*}(s) = optimal action from state s

- <u>The value (utility) of a state s:</u>
 V^{*}(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

 $\pi^*(s)$ = optimal action from state s

0.64 →	0.74 ≯	0.85 →	1.00
		^	
0.57		0.57	-1.00
		^	
0.49	◀ 0.43	0.48	∢ 0.28

Here V*(s) is a lookup table with 11 entries

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

 $\pi^*(s)$ = optimal action from state s

Here Q*(s,a) is a lookup table with 9*4+2 entries

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

 $\pi^*(s)$ = optimal action from state s

0.64 ▶	0.74 ▶	0.85 ▶	1.00
		^	
0.57		0.57	-1.00
		•	
0.49	∢ 0.43	0.48	◀ 0.28

Here $\pi^*(s)$ is a lookup table with 11 entries

The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

- Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one step of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence, which yields V*
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

0 0	Gridworl	d Display		
0.00	0.00	0.00	0.00	
		^		
0.00		0.00	0.00	
^	^		^	
0.00	0.00	0.00	0.00	
VALUES AFTER O ITERATIONS				

0 0	0	Gridworl	d Display	_	
	• 0.00	• 0.00	0.00)	1.00	
	• 0.00		∢ 0.00	-1.00	
	•	•	• 0.00	0.00	
	VALUES AFTER 1 ITERATIONS				

k=3

0	0	Gridworl	d Display	
	0.00)	0.52 →	0.78)	1.00
	• 0.00		• 0.43	-1.00
	• 0.00	• 0.00	• 0.00	0.00
	VALUE	S AFTER	3 ITERA	LIONS

k=4

0 0	0	Gridworl	d Display	
	0.37)	0.66)	0.83)	1.00
	• 0.00		• 0.51	-1.00
	• 0.00	0.00 →	• 0.31	∢ 0.00
	VALUE	S AFTER	4 ITERA	FIONS

00	0	Gridworl	d Display	
	0.51)	0.72 →	0.84)	1.00
	• 0.27		• 0.55	-1.00
	• 0.00	0.22 →	• 0.37	∢ 0.13
VALUES AFTER 5 ITERATIONS				

00	0	Gridworl	d Display	-
	0.59 →	0.73 →	0.85 →	1.00
	• 0.41		• 0.57	-1.00
	• 0.21	0.31 →	• 0.43	∢ 0.19
VALUES AFTER 6 ITERATIONS				

0 0	0	Gridworl	d Display	-
	0.62)	0.74)	0.85)	1.00
	•		•	
	0.50		0.57	-1.00
	•		•	
	0.34	0.36 →	0.45	∢ 0.24
	VALUE	S AFTER	7 ITERA	FIONS

0 0	0	Gridworl	d Display	
	0.63)	0.74)	0.85)	1.00
	• 0.53		• 0.57	-1.00
	• 0.42	0.39)	• 0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

00	0	Gridwork	d Display	
	0.64)	0.74 →	0.85 →	1.00
	• 0.55		• 0.57	-1.00
	▲ 0.46	0.40 →	• 0.47	∢ 0.27
VALUES AFTER 9 ITERATIONS				

00	C C Gridworld Display			
	0.64)	0.74 →	0.85)	1.00
	• 0.56		• 0.57	-1.00
	▲ 0.48	∢ 0.41	• 0.47	∢ 0.27
	VALUES AFTER 10 ITERATIONS			

Gridworld Display					
	0.64)	0.74 →	0.85)	1.00	
	• 0.56		• 0.57	-1.00	
	• 0.48	∢ 0.42	• 0.47	∢ 0.27	
VALUES AFTER 11 ITERATIONS					

○ ○ ○ Gridworld Display						
	0.64 ♪	0.74 ♪	0.85)	1.00		
	▲ 0.57		▲ 0.57	-1.00		
	▲ 0.49	∢ 0.42	• 0.47	∢ 0.28		
VALUES AFTER 12 ITERATIONS						

0 0	Gridworld Display				
	0.64)	0.74 →	0.85)	1.00	
	• 0.57		• 0.57	-1.00	
	▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28	
	VALUES AFTER 100 ITERATIONS				

Value Iteration

Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

• Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Value iteration is just a fixed point solution method
 - ... though the V_k vectors are also interpretable as time-limited values
 - There may be other methods to solve this Bellman equation

Quiz: Bellman equation for Q values?

We saw Bellman equation that characterized optimal V*(s)

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

Can we write down Bellman equation for Q*(s,a)?

 $Q^*(s,a) = ??? Q^*(s',a')$

(don't look at the next slide if you're following along with the notes please :)

Quiz: Bellman equation for Q values?

We saw Bellman equation that characterized optimal V*(s)

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

Can we write down Bellman equation for Q*(s,a)?

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^{*}(s',a') \right]$$

Leads to Q-Value iteration algorithm we'll see next week

The Bellman Equations

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

0.95 ♪	0.96 ♪	0.98 ▶	1.00
• 0.94		∢ 0.89	-1.00
0 .92	∢ 0.91	∢ 0.90	0.80

 \sim

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \max_{argmax} [0.5, 1.7, 1.2] = 1.3$$

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$

Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Problem 1: It's slow – O(S²A) per iteration

- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

k=12

00	○ ○ ○ Gridworld Display			
	0.64 ♪	0.74 ♪	0.85)	1.00
	▲ 0.57		▲ 0.57	-1.00
	▲ 0.49	∢ 0.42	• 0.47	∢ 0.28
	VALUES AFTER 12 ITERATIONS			

Noise = 0.2 Discount = 0.9 Living reward = 0

k=100

0 0	C Cridworld Display			
	0.64)	0.74 →	0.85)	1.00
	• 0.57		• 0.57	-1.00
	▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28
	VALUES AFTER 100 ITERATIONS			

Noise = 0.2 Discount = 0.9 Living reward = 0

Policy Methods

Policy Evaluation

Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

• Define the utility of a state s, under a fixed policy π :

 $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π

- What is the recursive relation (one-step look-ahead / Bellman equation)?
 - Hint: recall Bellman equation for optimal policy:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Utilities for a Fixed Policy

• Define the utility of a state s, under a fixed policy π :

 $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π

- What is the recursive relation (one-step look-ahead / Bellman equation)?
 - Hint: recall Bellman equation for optimal policy:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Answer:

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with your favorite linear system solver

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 🕨	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward

-10.00	100.00	-10.00
-10.00	* 70.20	-10.00
-10.00	▲ 48.74	-10.00
-10.00	▲ 33.30	-10.00

Policy Iteration

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- End up with value function V^{π_i}
- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Repeat steps until policy converges

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration

Compute values for a particular policy: use policy evaluation

Turn your values into a policy: use policy extraction (one-step lookahead)

Summary: MDP Algorithms

So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

Summary: Bellman Equation Zoo!

Optimal V and Q value functions:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right] \qquad V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^{*}(s', a') \right]$$

Value function for fixed policy π:

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

• Policy π for V and Q value functions:

$$\pi^*(s) = \arg\max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$
$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

The Bellman Equations

Next Time: Reinforcement Learning!

Extra Time: Convergence*

(won't be on exams or homeworks)

- How do we know the V_k vectors are going to converge?
- Proof sketch (assuming discount 0<γ<1):</p>
 - For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most γ^k max|R| different
 - So as k increases, the values converge

