Announcements

= Homework 3 due today (Sept 26) at 11:59pm PT

" Project 3 released and due next Friday (Oct 6) at 11:59pm PT

CS 188: Artificial Intelligence

Reinforcement Learning

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

The Crawler!

[Demo: Crawler Bot (L10D1)]

Video of Demo Crawler Bot

Quadruped Robot Learning in Berkeley Hills

[Smith et al, 2022]

Reinforcement Learning: Overview of this week

= Passive Reinforcement Learning: how to learn from already given experiences

= Model-based: learn the MDP model from experiences, then solve the MDP
= Model-free: forego learning the MDP model, directly learn V or Q

= Value learning: learns value of a fixed policy
= 2 approaches: Direct Evaluation & TD Learning
= Q learning: learns Q values of the optimal policy (Q version of TD Learning)

= Active Reinforcement Learning: how to collect new experiences
= Approximate Reinforcement Learning: to handle large state spaces

= Case studies: game playing, robotics, language assistants

Reinforcement Learning

= Still assume a Markov decision process (MDP):

= Asetofstatess e S
= Aset of actions (per state) A

= A model T(s,a,s’)

= A reward function R(s,a,s’)

Overheated

= Still looking for a policy m(s)

= New twist: don’t know T or R

= |.e. we don’t know which states are good or what the actions do
= Must actually try out actions and states to learn

Reinforcement Learning

= Still assume a Markov decision process (MDP):

= Asetofstatess e S
= Aset of actions (per state) A
= A model T(s,a,s’)

. State: s
= Areward function R(s,a,s’) Reward: r

= Still looking for a policy m(s)

= New twist: don’t know T or R

N

4)<://
Environment
\§

= |.e. we don’t know which states are good or what the actions do

= Must actually try out actions and states to learn

Actions: a

Offline (MDPs) vs. Online (RL)

9

J
D
iﬁﬂ

Offline Solution: Online Learning:

Compute policy ahead Compute policy as
of time experience comes in

Passive Reinforcement Learning

= Simplified task: policy evaluation
" |nput: a fixed policy m(s)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
" Goal: learn the state values

" |n this case:
= Learneris “along for the ride”
®" No choice about what actions to take
= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.

Model-Based Learning

Model-Based Learning

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate ofT(s, a, s’)
= Discover each R(s,a,s’) when we experience (s, a, s’)

= Step 2: Solve the learned MDP

= For example, use value iteration, as before

Example: Model-Based Learning

Input Policy w

Assume:y=1

Observed (s, a, s’, R) Transitions

Episode 1

4)
B, east, C, -1

C, east, D, -1

[+
% D, exit, X, 10)

Episode 3

4)
E, north, C, -1
C,east, D, -1

' +
\D, exit, X, 10)

Episode 2

4)
B, east, C, -1

C, east, D, -1

[+
% D, exit, X, 10)

Episode 4

4)
E, north, C, -1
C, east, A, -1

% A, exit, X, -10)

Learned Model

T(s,a,s")

-

-

T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

~

J

R(s,a,s")

-

-

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

~

J

Analogy: Expected Age

Goal: Compute expected age of cs188 students

Known P(A)
E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a;, a5, ... ay]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this Pla) = num(a) Why does this
work? Because N ElA] ~ 1 Za' work? Because
eventually you X N &=~ samples appear
learn the right ElA] = Z P(a)-a Z with the right

model. a j \ frequencies.

—

Model-Free Learning

Direct Evaluation

= Goal: Compute values for each state under &t
" |dea: Average together observed sample values

= Act accordingto

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be from
that state until the end of the episode:

sample;(s) = R(s) + YR(s') + y*R(s") + ...

= Average those samples:

V(s) « %z sample;(s)

= This is called direct or Monte-Carlo evaluation

Input Policy w

Example: Direct Evaluation

Observed (s, a, s’, R) Transitions

Episode 1

-
B, east, C, -1
C, east, D, -1

~N

Assume:y=1

[+
% D, exit, X, 10)

Episode 3

4)
E, north, C, -1
C,east, D, -1

Episode 2

-
B, east, C, -1
C, east, D, -1

~N

' +
\D, exit, X, 10)

[+
% D, exit, X, 10)

Episode 4

4)
E, north, C, -1
C, east, A, -1

% A, exit, X, -10)

Output Values

V(s) is sum of discounted rewards from s until the end, averaged over all encounters of s

Problems with Direct Evaluation

= What's good about direct evaluation? Output Values

" |t's easy to understand

" |t doesn’t require any knowledge of T, R

" |t eventually computes the correct average values,
using just sample transitions

= \What bad about it?

= |t wastes information about state connections

If Band E both go to C
under this policy, how can
their values be different?

" Need to have all episodes ahead of time (cannot
“stream” in transitions)

Problems with Direct Evaluation

Observed (s, a, s’, R) Transitions:

Episode 1

4)
E, north, C, 0

C,east, D,O

% D, exit, X, +10j

Episode 2

-
B, east,C, 0O

C, east, A, O

\A’ exit, x, -10

~

J

Is B a bad state?

Why Not Use Policy Evaluation?

= Simplified Bellman updates calculate V for a fixed policy:

* Each round, replace V with a one-step-look-ahead layer over V (s)

Vo(s) =0 @ s 7(s)

Vi1 (s) < ST (s,m(s),) [R(s,m(s),8) + VI ()] _sials),s

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

= Key question: how can we do this update to V without knowing T and R?
= |n other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

= We want to improve our estimate of V by computing these averages:

V,f_'_l(s) — ZT(S, 7w(s),s)[R(s,m(s),s) + q/V,f(s’)]

S

" |dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s), 3/1) -+ kaﬁ(s’l)

sampley = R(s,w(s), 5/2) -

samplen, = R(s, m(s), an) -+ WV,{W(S;%)

1
Vid 1(8) + -) sample;
()

- YV (s5)

Known P(A):

E[A]=) P(a)-a

Unknown P(A): “Model Free”

FEA] ~ %Zai

1

Sample-Based Policy Evaluation?

= We want to improve our estimate of V by computing these averages:

ka—l—l(s) — ZT(S, 7w(s),s)[R(s,m(s),s) + q/V,f(s/)]

S
" |dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s), 3/1) -+ *yV,gT(s’l)

samples = R(s, m(s), 8/2) -+ kaﬁ(SIQ)

samplen, = R(s, m(s), an) -+ WV,:(S%)

1
Vid 1(8) + -) sample;
()

Temporal Difference Learning

" Bigidea: learn from every experience! S
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation! AN
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s") +~4V™(s)
Update to V(s): VT(s) « (1 —a)V"™(s) + (a)sample O<ax<l1

Same update: VT(s) < V™(s) + a(sample — V™ (s))

Exponential Moving Average

. 1
= Traditional Average: AVG(x) = Nz Xn
n
= Need to have all N samples at once (cannot “stream” in samples)

= Exponential moving average

= The running interpolation update: z,, = (1 —«) - Zn_1 + @ - 2y, O<a<1l

= Makes recent samples more important:
Tp+(1—a) Tp1+(1—a)? zpo+...
1+(1-0o)+(1—a)?+...

= Forgets about the past samples (how quickly depends on a)

Lp =

= Decreasing learning rate a can give converging averages

Example: Temporal Difference Learning

States

5 lclo

Assume:y=1,a=1/2

Observed Transitions

[B, east, C, -2] [C, east, D, -2]

oo o] |alo]e] (a5]

VT(s) + (1 = a)V7(s) + a |R(s,m(s),s) + 4V (s))

TD Learning Happens in the Brain!

Do dopamine neurons report an error

in the prediction of reward?,
= Neurons transmit Dopamine to encode No predicion
reward or value prediction error
VT(s) « V" (s) + Ql(sample — V7 (s)]

Reward predicted
Reward occurs

= Example of Neuroscience & Al
informing each other

Reward predicted
No reward occurs

—1 .._‘:.._ .‘0_:. :.'..'.'. : .‘2:8
CS l (No R)

[A Neural Substrate of Prediction and Reward.
Schultz, Dayan, Montague. 1997]

Problems with TD Value Learning

= TD value leaning is a model-free way to do policy evaluation

= However, if we want to turn values into a (new) policy, we’re stuck:

m(s) = argmax Q(s,a)

Q(s,a) = ZT(S, a,s) [R(s, a,s’) + ny(s’)}

= \What can we do?

= Learn Q-values, not values

= Makes action selection model-free too!

Q-Value Iteration

= Value iteration: find successive (depth-limited) values
= Start with Vy(s) = 0, which we know is right
= GivenV,, calculate the depth k+1 values for all states:

Viet1(s) mC?XZT(S, a,s) {R(s, a,s) + nyk(s’)]

» But Q-values are more useful, so compute them instead
= Start with Qy(s,a) = 0, which we know is right
= Given Qy, calculate the depth k+1 g-values for all g-states:

Qit1(s,0) « Y T(s,0,5) | R(s.0,5) +7 maxQy(s',a)

S

Q-Learning

= Q-Learning: sample-based Q-value iteration

Qit1(s,0) < Y T(s,0,5) |R(s.a,5) +7 maxQy(s',a')

a

" Learn Q(s,a) values as you go vvv
= Receive a sample (s,a,s’,r) }a‘}a‘g -
= Consider your old estimate: Q(s,a)

S o
= Consider your new sample estimate: A A

sample = R(s,a,s") + 7 maE/BXQ(S/’ a') z\cl)allc;r;%:)rnﬁm“cy WW
ANV AN

" |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

" This is called off-policy learning

= Caveats:

= You have to explore enough

" You have to eventually make the learning rate

small enough

= .. but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

Active Reinforcement Learning

Active Reinforcement Learning

= Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
" You choose the actions now
= Goal: learn the optimal policy / values

= |n this case:
= | earner makes choices!

= Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and
find out what happens...

What we did today (a lot!)

" Focused on Passive Reinforcement Learning problem
= How to learn from already given experiences when we don’t know T and R

Saw distinction between model-based and model-free approaches to RL
= Model-Based: Learn a model of T and R from experiences, then solve MDP

" Model-Free: Learn from experience samples without building a model
" Direct evaluation was our first attempt at model-free value learning

= Estimate values from samples of discounted sums of rewards: sample = R(s) + yR(s") + y*R(s") + ...

= |ssue 1: Does not take advantage of state connections
= |ssue 2: Needs to see all transitions at once
" |ntroduced TD Learning as a way to address two issues above
= Solution 1: Use V(s) when calculating value samples: sample = R(s) + yV™(s")
= Solution 2: Use Exponential Moving Average to build up averages one transition at a time
= New issue: TD Learning only learns state values — can’t use it to pick optimal actions!
= Solution is Q-Learning: learn Q values instead of V with TD-like update
= Now can pick optimal actions, so get an optimal model-free policy

Next Time: Active & Approximate RL!

