
Announcements

§ Homework 3 due today (Sept 26) at 11:59pm PT

§ Project 3 released and due next Friday (Oct 6) at 11:59pm PT



CS 188: Artificial Intelligence
Reinforcement Learning

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Reinforcement Learning



The Crawler!

[Demo: Crawler Bot (L10D1)]



Video of Demo Crawler Bot



Quadruped Robot Learning in Berkeley Hills

[Smith et al, 2022]



Reinforcement Learning: Overview of this week

§ Passive Reinforcement Learning: how to learn from already given experiences
§ Model-based: learn the MDP model from experiences, then solve the MDP
§ Model-free: forego learning the MDP model, directly learn V or Q

§ Value learning: learns value of a fixed policy
§ 2 approaches: Direct Evaluation & TD Learning

§ Q learning: learns Q values of the optimal policy (Q version of TD Learning)

§ Active Reinforcement Learning: how to collect new experiences

§ Approximate Reinforcement Learning: to handle large state spaces

§ Case studies: game playing, robotics, language assistants



Reinforcement Learning

§ Still assume a Markov decision process (MDP):
§ A set of states s Î S
§ A set of actions (per state) A
§ A model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy p(s)

§ New twist: don’t know T or R
§ I.e. we don’t know which states are good or what the actions do
§ Must actually try out actions and states to learn



Reinforcement Learning

§ Still assume a Markov decision process (MDP):
§ A set of states s Î S
§ A set of actions (per state) A
§ A model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy p(s)

§ New twist: don’t know T or R
§ I.e. we don’t know which states are good or what the actions do
§ Must actually try out actions and states to learn

Environment

Agent

Actions: a
State: s

Reward: r



Offline (MDPs) vs. Online (RL)

Offline Solution:
Compute policy ahead 

of time

Online Learning:
Compute policy as 

experience comes in



Passive Reinforcement Learning

§ Simplified task: policy evaluation
§ Input: a fixed policy p(s)
§ You don’t know the transitions T(s,a,s’)
§ You don’t know the rewards R(s,a,s’)
§ Goal: learn the state values

§ In this case:
§ Learner is “along for the ride”
§ No choice about what actions to take
§ Just execute the policy and learn from experience
§ This is NOT offline planning!  You actually take actions in the world.



Model-Based Learning



Model-Based Learning

§ Model-Based Idea:
§ Learn an approximate model based on experiences
§ Solve for values as if the learned model were correct

§ Step 1: Learn empirical MDP model
§ Count outcomes s’ for each s, a
§ Normalize to give an estimate of
§ Discover each when we experience (s, a, s’)

§ Step 2: Solve the learned MDP
§ For example, use value iteration, as before



Example: Model-Based Learning

Input Policy p 

Assume: g = 1

Observed (s, a, s’, R) Transitions Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…



Analogy: Expected Age
Goal: Compute expected age of cs188 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.



Model-Free Learning



Direct Evaluation

§ Goal: Compute values for each state under p
§ Idea: Average together observed sample values

§ Act according to p
§ Every time you visit a state, write down what the 

sum of discounted rewards turned out to be from 
that state until the end of the episode:

§ Average those samples:

§ This is called direct or Monte-Carlo evaluation

𝑉 𝑠 ←
1
𝑁
&
!

𝑠𝑎𝑚𝑝𝑙𝑒!(𝑠)

𝑠𝑎𝑚𝑝𝑙𝑒! 𝑠 = 𝑅 𝑠 + 𝛾𝑅 𝑠" + 𝛾#𝑅 𝑠"" +	…



Example: Direct Evaluation

Input Policy p 

Assume: g = 1

Observed (s, a, s’, R) Transitions Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2

V(s) is sum of discounted rewards from s until the end, averaged over all encounters of s



Problems with Direct Evaluation

§ What’s good about direct evaluation?
§ It’s easy to understand
§ It doesn’t require any knowledge of T, R
§ It eventually computes the correct average values, 

using just sample transitions

§ What bad about it?
§ It wastes information about state connections
§ Need to have all episodes ahead of time (cannot 

“stream” in transitions)

Output Values

A

B C D

E

0 0 +10

-10

0

If B and E both go to C 
under this policy, how can 
their values be different?



Problems with Direct Evaluation

Observed (s, a, s’, R) Transitions:

Is B a bad state?

E, north, C, 0
C, east,   D, 0
D, exit,    x, +10

Episode 1

Episode 2
B, east, C, 0
C, east, A, 0
A, exit,  x, -10

A

B C D

E

0 0 +10

-10

0



Why Not Use Policy Evaluation?

§ Simplified Bellman updates calculate V for a fixed policy:
§ Each round, replace V with a one-step-look-ahead layer over V

§ This approach fully exploited the connections between the states
§ Unfortunately, we need T and R to do it!

§ Key question: how can we do this update to V without knowing T and R?
§ In other words, how to we take a weighted average without knowing the weights?

p(s)

s

s, p(s)

s, p(s),s’
s’



Sample-Based Policy Evaluation?
§ We want to improve our estimate of V by computing these averages:

§ Idea: Take samples of outcomes s’ (by doing the action!) and average

Unknown P(A): “Model Free”

Known P(A):



Sample-Based Policy Evaluation?
§ We want to improve our estimate of V by computing these averages:

§ Idea: Take samples of outcomes s’ (by doing the action!) and average

p(s)

s

s, p(s)

s1's2' s3'
s, p(s),s’

s'

Almost!  But we can’t 
rewind time to get sample 
after sample from state s.



Temporal Difference Learning

§ Big idea: learn from every experience!
§ Update V(s) each time we experience a transition (s, a, s’, r)
§ Likely outcomes s’ will contribute updates more often

§ Temporal difference learning of values
§ Policy still fixed, still doing evaluation!
§ Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

0 < ⍺ < 1



Exponential Moving Average

§ Traditional Average:

§ Need to have all N samples at once (cannot “stream” in samples)

§ Exponential moving average 
§ The running interpolation update:

§ Makes recent samples more important:

§ Forgets about the past samples (how quickly depends on ⍺)

§ Decreasing learning rate ⍺ can give converging averages

𝐴𝑉𝐺(𝑥) =
1
𝑁
*
!

𝑥!

0 < ⍺ < 1



Example: Temporal Difference Learning

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States



TD Learning Happens in the Brain!

§ Neurons transmit Dopamine to encode 
reward or value prediction error

§ Example of Neuroscience & AI 
informing each other

[A Neural Substrate of Prediction and Reward. 
Schultz, Dayan, Montague. 1997]

positive

zero

negative



Problems with TD Value Learning

§ TD value leaning is a model-free way to do policy evaluation

§ However, if we want to turn values into a (new) policy, we’re stuck:

§ What can we do?
§ Learn Q-values, not values
§ Makes action selection model-free too!

a

s

s, a

s,a,s’
s’



Q-Value Iteration

§ Value iteration: find successive (depth-limited) values
§ Start with V0(s) = 0, which we know is right
§ Given Vk, calculate the depth k+1 values for all states:

§ But Q-values are more useful, so compute them instead
§ Start with Q0(s,a) = 0, which we know is right
§ Given Qk, calculate the depth k+1 q-values for all q-states:



Q-Learning
§ Q-Learning: sample-based Q-value iteration

§ Learn Q(s,a) values as you go
§ Receive a sample (s,a,s’,r)
§ Consider your old estimate:
§ Consider your new sample estimate:

§ Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

no longer policy 
evaluation! 



Video of Demo Q-Learning -- Gridworld



Video of Demo Q-Learning -- Crawler



Q-Learning Properties

§ Amazing result: Q-learning converges to optimal policy -- even 
if you’re acting suboptimally!

§ This is called off-policy learning

§ Caveats:
§ You have to explore enough
§ You have to eventually make the learning rate
 small enough
§ … but not decrease it too quickly
§ Basically, in the limit, it doesn’t matter how you select actions (!)



Active Reinforcement Learning



Active Reinforcement Learning

§ Full reinforcement learning: optimal policies (like value iteration)
§ You don’t know the transitions T(s,a,s’)
§ You don’t know the rewards R(s,a,s’)
§ You choose the actions now
§ Goal: learn the optimal policy / values

§ In this case:
§ Learner makes choices!
§ Fundamental tradeoff: exploration vs. exploitation
§ This is NOT offline planning!  You actually take actions in the world and 

find out what happens…



What we did today (a lot!)

§ Focused on Passive Reinforcement Learning problem
§ How to learn from already given experiences when we don’t know T and R

§ Saw distinction between model-based and model-free approaches to RL
§ Model-Based: Learn a model of T and R from experiences, then solve MDP
§ Model-Free: Learn from experience samples without building a model

§ Direct evaluation was our first attempt at model-free value learning
§ Estimate values from samples of discounted sums of rewards: sample = 	𝑅 𝑠 + 𝛾𝑅 𝑠" + 𝛾#𝑅 𝑠"" +	…
§ Issue 1: Does not take advantage of state connections
§ Issue 2: Needs to see all transitions at once

§ Introduced TD Learning as a way to address two issues above
§ Solution 1: Use V(s) when calculating value samples: sample = 	𝑅 𝑠 + 𝛾𝑉$(𝑠")
§ Solution 2: Use Exponential Moving Average to build up averages one transition at a time
§ New issue: TD Learning only learns state values – can’t use it to pick optimal actions!

§ Solution is Q-Learning: learn Q values instead of V with TD-like update
§ Now can pick optimal actions, so get an optimal model-free policy



Next Time: Active & Approximate RL!


