Announcements

- Homework 3 due today (Sept 26) at 11:59pm PT
- Project 3 released and due next Friday (Oct 6) at 11:59pm PT

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

The Crawler!

[Demo: Crawler Bot (L10D1)]

Video of Demo Crawler Bot

Quadruped Robot Learning in Berkeley Hills

[Smith et al, 2022]

Reinforcement Learning: Overview of this week

- Passive Reinforcement Learning: how to learn from already given experiences
 - Model-based: learn the MDP model from experiences, then solve the MDP
 - Model-free: forego learning the MDP model, directly learn V or Q
 - Value learning: learns value of a fixed policy
 - 2 approaches: Direct Evaluation & TD Learning
 - Q learning: learns Q values of the optimal policy (Q version of TD Learning)
- Active Reinforcement Learning: how to collect new experiences
- Approximate Reinforcement Learning: to handle large state spaces
- Case studies: game playing, robotics, language assistants

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy π(s)

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try out actions and states to learn

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy π(s)

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try out actions and states to learn

Offline (MDPs) vs. Online (RL)

Offline Solution:

Compute policy ahead of time

Online Learning:

Compute policy as experience comes in

Passive Reinforcement Learning

Simplified task: policy evaluation

- Input: a fixed policy π(s)
- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- Goal: learn the state values

In this case:

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.

Model-Based Learning

Model-Based Learning

Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}(s, a, s')$
- Discover each $\widehat{R}(s, a, s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Example: Model-Based Learning

Analogy: Expected Age

Goal: Compute expected age of cs188 students

Without P(A), instead collect samples $[a_1, a_2, ..., a_N]$

Model-Free Learning

Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be from that state until the end of the episode:

 $sample_i(s) = R(s) + \gamma R(s') + \gamma^2 R(s'') + \dots$

Average those samples:

$$V(s) \leftarrow \frac{1}{N} \sum_{i} sample_i(s)$$

This is called *direct* or *Monte-Carlo evaluation*

Example: Direct Evaluation

V(s) is sum of discounted rewards from s until the end, averaged over all encounters of s

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Need to have all episodes ahead of time (cannot "stream" in transitions)

Output Values

If B and E both go to C under this policy, how can their values be different?

Problems with Direct Evaluation

Is **B** a bad state?

Why Not Use Policy Evaluation?

π(s)

s, π(s),s'

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- **Key question:** how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$$

$$sample_{2} = R(s, \pi(s), s_{2}') + \gamma V_{k}^{\pi}(s_{2}')$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Known P(A):

$$E[A] = \sum_{a} P(a) \cdot a$$
Unknown P(A): "Model Free"

$$E[A] \approx \frac{1}{N} \sum_{i} a_{i}$$

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$$

$$sample_{2} = R(s, \pi(s), s_{2}') + \gamma V_{k}^{\pi}(s_{2}')$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$ Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$ $0 < \alpha < 1$ Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

Exponential Moving Average

- Traditional Average: $AVG(x) = \frac{1}{N} \sum_{n} x_n$
 - Need to have all N samples at once (cannot "stream" in samples)

- Exponential moving average
 - The running interpolation update: $\bar{x}_n = (1 \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$ $0 < \alpha < 1$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past samples (how quickly depends on α)
- Decreasing learning rate α can give converging averages

Example: Temporal Difference Learning

 $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[R(s,\pi(s),s') + \gamma V^{\pi}(s') \right]$

TD Learning Happens in the Brain!

- Neurons transmit *Dopamine* to encode reward or value prediction error $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (sample - V^{\pi}(s))$
- Example of Neuroscience & Al informing each other

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we're stuck:

$$\pi(s) = \arg\max_{a} Q(s, a)$$
$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- What can we do?
 - Learn Q-values, not values
 - Makes action selection model-free too!

Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with V₀(s) = 0, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with Q₀(s,a) = 0, which we know is right
 - Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$

no longer policy evaluation!

Incorporate the new estimate into a running average:

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$

[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Active Reinforcement Learning

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

What we did today (a lot!)

- Focused on *Passive* Reinforcement Learning problem
 - How to learn from already given experiences when we don't know T and R
- Saw distinction between model-based and model-free approaches to RL
 - Model-Based: Learn a model of T and R from experiences, then solve MDP
 - *Model-Free:* Learn from experience *samples* without building a model
- Direct evaluation was our first attempt at model-free value learning
 - Estimate values from samples of discounted sums of rewards: sample = $R(s) + \gamma R(s') + \gamma^2 R(s'') + ...$
 - Issue 1: Does not take advantage of state connections
 - Issue 2: Needs to see all transitions at once
- Introduced TD Learning as a way to address two issues above
 - Solution 1: Use V(s) when calculating value samples: sample = $R(s) + \gamma V^{\pi}(s')$
 - Solution 2: Use *Exponential Moving Average* to build up averages one transition at a time
 - New issue: TD Learning only learns state values can't use it to pick optimal actions!
- Solution is *Q-Learning:* learn Q values instead of V with TD-like update
 - Now can pick optimal actions, so get an optimal model-free policy

Next Time: Active & Approximate RL!