Announcements

HW 4 due today (Oct 3) at 11:59pm PT

Project 3 due Friday (Oct 6) at 11:59pm PT

HW 5 released soon, due next Tuesday (Oct 10) at 11:59pm PT

Midterm is on Monday (Oct 16) 7-9pm PT

= See exam logistics page for details

" Fill out exam requests form for by this Friday (Oct 6) 11:59pm PT



https://inst.eecs.berkeley.edu/~cs188/fa23/exam/
https://docs.google.com/forms/d/e/1FAIpQLSd_jV_IrR8-LW_OTFl3vTnB3hzGTbWdnW0VNmsTGNeI7eiWrA/viewform

CS188 Outline

= We’re done with Part |: Search and Planning!

= Part Il: Probabilistic Reasoning

Why should we care about probability, randomness, uncertainty in Al?
= To better model natural environment: the world has unpredictable events

" To better model natural cognition: the agent may be uncertain about the world state
or which actions to take

" To develop more efficient algorithms: approximate solutions via random sampling

= Part lll: Machine Learning



CS188 Outline

= We're done with Part |: Search and Planning!

= Part Il: Probabilistic Reasoning

" Form and update beliefs:

= Diagnosis

= Speech recognition

= Tracking objects

= Robot mapping

= Genetics

= Error correcting codes

= Explain human cognition
... lots more!

= Part lll: Machine Learning

P(T,W)

T W P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2

rain 0.3




CS 188: Artificial Intelligence

Probability

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]



Today

= Probability

= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution

Product Rule, Chain Rule, Bayes’ Rule

Inference by Enumeration

= You’ll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!




Inference in Ghostbusters

= Aghostisin the grid

somewhere

= Sensor readings tell how
close a square is to the

ghost
= On the ghost: red

= 1 or 2 away: orange

= 3 or4away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3)

P(orange | 3)

P(yellow | 3)

P(green | 3)

0.05

0.15

0.5

0.3

[Demo: Ghostbuster — no probability (L12D1) ]



Video of Demo Ghostbuster — No probability




Uncertainty

= General situation:

= Observed variables (evidence): Agent knows certain things

about the state of the world (e.g., sensor readings or
symptoms)

= Unobserved variables: Agent needs to reason about other
aspects (e.g. where an object is or what disease is present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning and inference gives us a
framework for managing our beliefs and knowledge



Random Variables

" Arandom variable is some aspect of the world about
which we (may) have uncertainty

= R=Isitraining?

= T=lIsit hotorcold?

= D =How long will it take to drive to work?
= L =Whereis the ghost?

= We denote random variables with capital letters

= |jke variables in a CSP, random variables have domains

= Rin{true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, )

= Lin possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

= Associate a probability with each value of that random variable

= Temperature:

P(T)
T p
hot 0.5
cold | 0.5

= Weather:

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




Unobserved random variables have distributions

P(T)

T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

Shorthand notation:
P(hot) same as P(T = hot)
P(cold) same as P(T = cold)

P(rain) same as P(W = rain)

OK if all domain entries are unique

A probability (of a lower case value) is a single number:

P(W = rain) = 0.1

Must have:

Ve P(X =x2)>0

and

P(X=z)=1
-



= A joint distribution over a set of random variables: X1, X5, ..., Xy

Joint Distributions

specifies a real number for each assignment (or outcome):
P(Xl — xl,Xz = Xy, ...,XN — XN)

P(xy, Xy, ., Xn)

" Must obey: P(x1,2>,...2n) >0

- P(x1,z0,...2n) = 1
(z1,72,...T1)

Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!

P(T,W)

T W P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain 0.3




Probabilistic Models

A probabilistic model is a joint distribution Distribution over TW

over a set of random variables

T W P
Probabilistic models: hot sun 0.4
= (Random) variables with domains hot rain 0.1
=  Assignments are called outcomes
= Joint distributions: say whether assignments cold sun 0.2
(outcomes) are likely cold rain 0.3
= Normalized: sum to 1.0

. . . : : :
Ideally: only certain variables directly interact Constraint over TW

Constraint satisfaction problems: T W
= Variables with domains

= Constraints: state whether assignments are

possible hot rain
= |deally: only certain variables directly interact

hot sun

cold sun

—~ (MM ||| O

cold rain




Events

= An event is a set E of outcomes

P(E)Y= )  P(z1...zn)
(33‘1...3371)€E

" From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about
are partial assignments, like P(T=hot)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




= P(+x, +y) ?

= P(+x)?

" P(-yOR+x)?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




= P(+x, +y) ?

= P(+x)?

" P(-yOR+x)?

Quiz: Events

0.2

0.2+0.3=0.5

0.1+0.3+0.2=0.6

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

= Marginal distributions are sub-tables which eliminate random variables
= Marginalization (summing out): Combine collapsed rows by adding

P(T)
P(T, W) P(t) = 2 P(t,w) T P
* hot 0.5
T w P
cold 0.5
hot sun 0.4
hot rain 0.1 P(w) = 2 P(t,w) P(w)
cold sun 0.2 - W p
cold rain 0.3 . sun 0.6
rain 0.4

P(X; =xq) = zP(X1 = x1,Xy = Xx3)
X

2
™ hidden (unobserved) variables



Quiz: Marginal Distributions

PG = ) P(x,)
Y

—

PG) = ) P(x,)

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—




Quiz: Marginal Distributions

PG = ) P(x,)
Y

—

PG) = ) P(x,)

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—

P(Y)




Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

evidence P(a,b)

Y P(a,b)
PLP) =50

query = (proportion of b where a holds)




Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

P(a,b)

P(alb) = 20

= (proportion of b where a holds)

P(T,W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a)

PW=sr=c)= LW=8T=c) 02
P(T = ¢) 0.5

_——

=P(W=s8,T=c¢c)+PW=r,T =c)
=02+4+03 =0.5

= 0.4



Quiz: Conditional Probabilities

P(X,Y)

X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

P(a,b
P(alp) = 212

P(b)

= P(+x | +y)?

= P(-x|+y)?

" Py [+x)?



Quiz: Conditional Probabilities

P(X,Y)

X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

P(a,b
P(alp) = 212

P(b)

= P(+x | +y)?

= P(-x|+y)?

" Py [+x)?

0.2/0.6=1/3

0.4/0.6=2/3

0.3/0.5=3/5



= Conditional distributions are probability distributions over

Conditional Distributions

P(alb) = 220

some variables given fixed values of others P(b)

P(W|T)

Conditional Distributions

- P(W|T = hot)

Joint Distribution

P(T,W)
W P
T W P
sun 0.8
hot sun 0.4
rain 0.2 ,
hot rain 0.1
P(W|T = cold) cold | sun 0.2
W P cold rain 0.3
sun 0.4
rain 0.6




Normalization Trick

P(W =s,T = c¢)

P(W =s|T=¢) =

P(T = c¢)
. P(W =s,T = c¢)
P(T,W) T PW=sT=c)+PW=nrT=c)
0.2
= = 0.4
T W P 024+03 ° P(W|T = ¢)
hot sun 0.4
hot rain 0.1
sun 0.4
cold sun 0.2 : 0.6
. PW=r,T =c¢) rain .
P(W =r|T = =
cold rain 0.3 ( 7| c) (T =)

. P(W=nrT = c)

C PW=sT=c¢c)+PW=rT=c)
03
02403

0.6



Normalization Trick

P(W=sT=c)
P(T =c¢)
. P(W =s,T =c)
C PW=s,T=c)+PW=rT=c)

P(W =s|T=c) =

0.240.3
P(T, W) SELECT the joint NORMALIZE the
probabilities selection .

T W P matching the P(C, W) (make it sum to one) P(W|T T C)
hot sun 0.4 evidence T W P W, p
hOt rain 0.1 I COId sun 0.2 sun 0.4
cold | sun 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3

P(W=nr,T=c)

P(T =c¢)
. P(W=nr,T=c)
T PW=sT=c)+PW=rT=c)
03
02403

P(W=7rT=c)=

= 0.6



Normalization Trick

P(T,W) SELECT the joint NORMALIZE the
probabilities selection .

T W P matching the P(c, W) (make it sum to one) P(W|T = ¢)
hot sun 0.4 evidence T W P W, p
hot rain 0.1 — cold | sun | 0.2 sun | 0.4
cold | sun 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3

= Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

P(zy,20) _  P(xy,22)
P(x2) >y P(x1,72)

P(x1|zs) =



" P(X'| Y=-y)?
P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

Quiz: Normalization Trick

SELECT the joint
probabilities
matching the

evidence

ﬁ

NORMALIZE the
selection
(make it sum to one)

ﬂ



" P(X'| Y=-y)?
P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

Quiz: Normalization Trick

SELECT the joint
probabilities
matching the

evidence

ﬁ

X Y P
+X -y 103
-X -y 0.1

NORMALIZE the
selection
(make it sum to one)

ﬂ

X P
+X 0.75
-X 0.25




= (Dictionary) To bring or restore to a

= Procedure:

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1

W P
sun 0.2
rain 0.3

Normalize

ﬂ
Z=05

To Normalize

normal condition

W P
sun 0.4
rain 0.6

N

All entries sum to ONE

= Example 2

T W P
hot sun 20
hot rain 5
cold sun 10
cold rain 15

Normalize

d
Z =50

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Probabilistic Inference

Probabilistic inference: compute a desired @ <
probability from other known probabilities (e.g.

conditional from joint) L // ‘é

We generally compute conditional probabilities
= P(ontime | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

Probabilities change with new evidence:
= P(ontime | no accidents, 5 a.m.) =0.95

= P(ontime | no accidents, 5 a.m., raining) = 0.80 Cj\\%‘ -

= QObserving new evidence causes beliefs to be updated




. P(W)?

Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




. P(W)?

query

Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




. P(W)?

Inference by Enumeration

P(sun)=0.3+0.1+0.1+0.15=0.65

S T W P
summer | hot sun 0.30
summer | hot rain | 0.05
summer | cold sun 0.10
summer | cold rain | 0.05
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter | cold rain 0.20




. P(W)?

Inference by Enumeration

P(sun)=0.3+0.1+0.1+0.15=0.65
P(rain) = 0.05 + 0.05 + 0.05 + 0.20 = 0.35

S T W P
summer | hot sun 0.30
summer | hot rain | 0.05
summer | cold sun 0.10
summer | cold rain | 0.05
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter | cold rain 0.20




Inference by Enumeration

evidence
\
= P(W | winter, hot)?
@
query

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

= P(W | winter, hot)?

unnormalized P(sun | winter, hot) = 0.10
unnormalized P(rain | winter, hot) = 0.05
P(sun | winter, hot) =0.10/0.15 =2/3
P(rain | winter, hot) =0.05/0.15=1/3

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

evidence

\

= P(W | winter)?

4
query

hidden (unobserved) variable: T

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

= P(W | winter)?

unnormalized P(sun | winter) =0.1 + 0.15=0.25

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

= P(W | winter)?

unnormalized P(sun | winter) =0.1 + 0.15=0.25

unnormalized P(rain | winter) = 0.05 + 0.20 = 0.25

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

= P(W | winter)?

unnormalized P(sun | winter) =0.1 + 0.15=0.25

unnormalized P(rain | winter) = 0.05 + 0.20 = 0.25

P(sun | winter) =0.25/0.50=0.5
P(rain | winter) =0.25/0.50=0.5

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
: ;Vlj:$n*ci:;:§|2|.e5: Ei1...Ep=e1...e X1, Xo, ... Xn b variables, too
neryvarl - Q All variables (Q|€1 R €k>
= Hidden variables: Hy...H,
= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence

with the evidence

1

P
= X _Z
0.07
02 |
0.01 ;a
| -Nl Z=ZP(Q,61-~ek)
P(Q,e1...ex) !

P(Qle1---ex) = %P(Qael"'ek)



Inference by Enumeration

= QObvious problems:

= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution



The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|y) = P(z,y) Pai) = 080

S Bl |



The Product Rule

P(y)P(z|ly) = P(z,y)

= Example:
P(D|W) P(D,W)
P(W) D w | P D W
R p wet sun 0.1 wet sun
un 08 dry sun | 0.9 dry sun
ain 02 wet rain 0.7 wet rain
dry rain | 0.3 dry rain




The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(xy,x0,23) = P(x1)P(z2|x1)P(x3|r1,22)

P(x1,20,...00n) = HP(:BZ-|:131 e Ti—1)
7

= Why is this always true?



Bayes Rule




Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)

That’s my rule! }

= Dividing, we get:

P(aly) = Y9 poy

P(y)
= Why is this at all helpful?

= |Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
* Foundation of many systems we’ll see later (e.g. ASR, MT)

= |n the running for most important Al equation!



Bayes’ Rule

= Two ways to factor a joint distribution over two variables:
P(z,y) = P(z|ly)P(y) = P(y|lz) P(z)

= Dividing, we get:

P(y|x) P (effect|cause) P(cause)

P(x|ly) = P(x) P(causeleffect) =

P(y) P (effect)

= Why is this at all helpful?

= |Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
* Foundation of many systems we’ll see later (e.g. ASR, MT)

= |n the running for most important Al equation!



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(causeleffect) = P(effect)

= Example:
= M: meningitis, S: stiff neck

P(+m) = 0.0001 .

xampie
P(+s|+m) =08 o
P(+s| —m) =0.01

P(+s|+m)P(+m) P(+s|+m)P(+m) 0.8 x 0.0001

P = — =
(+ml +5) Pl+s) P(+s|+m)P(+m) + P(+s] —m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999



Quiz: Bayes’ Rule

. P(D\W)
= Glven:
P(W) D W P
R P wet sun 0.1
un 08 dry sun 0.9
cain 0.2 wet rain 0.7
dry rain 0.3

" Whatis P(W | dry) ?



Quiz: Bayes’ Rule

. P(D\W)
= Glven:
P(W) D W P
R p wet sun 0.1
un 08 dry sun 0.9
cain 0.2 wet rain 0.7
dry rain 0.3

" Whatis P(W | dry) ?

unnormalized P(sun|dry) = P(dry|sun) * P(sun) =0.9 * 0.8 =0.72
unnormalized P(rain|dry) = P(dry|rain) * P(rain) = 0.3 * 0.2 = 0.06
P(sun|dry)=0.72/0.78 =12/13

P(rain|dry)=0.06/0.78 = 1/13



Ghostbusters, Revisited

= Let’s say we have two distributions:

= Prior distribution over ghost location: P(G)
= Let’s say this is uniform
_ | SIOM 1! | 011 [ o1l
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1) 011 & 011 # 0.11
= E.g. P(R=yellow | G=(1,1)) =0.1
distribution P(G|r) over ghost locations P(GIr)
given a reading using Bayes’ rule:
.

= We can calculate the posterior

unnormalized P(g|r) = P(r|g)P(g) <0.01

[Demo: Ghostbuster — with probability (L12D2) ]



Video of Demo Ghostbusters with Probability




Next Time: Bayes’ Nets



