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Review: Probabilistic Inference

= Probabilistic inference: compute a desired
probability from other known probabilities (e.g.
conditional from joint)

= We generally compute conditional probabilities
= P(ontime | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:

= P(ontime | no accidents, 5 a.m.) =0.95
= P(ontime | no accidents, 5 a.m., raining) = 0.80
= QObserving new evidence causes beliefs to be updated




General case:
Evidence variables:
Query* variable:
Hidden variables:

Review: Inference by Enumeration

Step 1: Select the
entries consistent
with the evidence
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All variables

Step 2: Sum out H to get joint
of Query and evidence
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= Step 3: Normalize
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Review: Inference by Enumeration

. P(W)?

= P(W | winter)?

= P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Review: Inference by Enumeration

= QObvious problems:

= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution



Review: The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|y) = P(z,y) < rewm="w0

S Bl |



Review: The Product Rule

P(y)P(z|ly) = P(z,y)

= Example:
P(D|W) P(D,W)

P(W) D w | P D w

R p wet sun 0.1 wet sun

sun | 0.8 dry | sun |09 <::> dry | sun

i Wi i

ain 02 wet rain 0 wet rain

dry rain | 0.3 dry rain




Review: The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(xy,x0,23) = P(x1)P(z2|x1)P(x3|r1,22)

P(x1,20,...00n) = HP(:UZ-|:131 e Ti—1)
7

= Why is this always true?



Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable

= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information



Independence




Independence

= Two variables are independent if:

Vo,y: P(x,y) = P(z)P(y)

= This says that their joint distribution factors into a product two
simpler distributions

= Another form:

Va,y : Plxly) = P(x)

= Wewrite: X || Y

= |[ndependence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

Pi(T, W)

T W P
hot sun | 0.4
hot rain | 0.1
cold sun | 0.2
cold rain | 0.3

Py (T, W)

T W P
hot sun | 0.3
hot rain | 0.2
cold sun | 0.3
cold rain | 0.2

P(T)
T P
hot 0.5
cold | 0.5
P(W)
W P
sun 0.6

rain 04




Example: Independence

= N fair, independent coin flips:

P(X1) P(X5) P(Xp)

H |05 H |05 o H |05

T 0.5 T 0.5 T 0.5
“_ o

—




Conditional Independence




Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
=  P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
=  P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= X is conditionally independent of Y given Z X_U_Y‘Z

if and only if:
Va,y, 2 0 P(x,y|z) = P(x|z)P(y|z)
or, equivalently, if and only if

Va,y.z : P(alz,y) = P(al2)



Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining




Conditional Independence

= \What about this domain:

= Fire
= Smoke
= Alarm




Conditional Independence and the Chain Rule

* Chainrule: P(X1,Xp,... Xpn) = P(X1)P(Xo|X1)P(X3] X1, X2) - ..

= Trivial decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain)

= Bayes’nets / graphical models help us express conditional independence assumptions



Ghostbusters Chain Rule

Each sensor depends only

on where the ghost is P(T,B,G) = P(G) P(T|G) P(B|G)
That means, the two sensors are T B G P(T,B,G)
conditionally independent, given the

ghost position +t +b +g 0.16

+t +b -g 0.16
+t -b +g 0.24
+t -b -g 0.04

T: Top square is red
B: Bottom square is red
G: Ghost is in the top

Givens: -t +b | +g 0.04
P(+g)=0.5

P( -g)=0.5 -t +b | -g 0.24
P(+t | +g)=0.8 -t b | +g 0.06
P(+t | -g)=0.4

P(+b | +g)=0.4 -t | -b | -g 0.06
P(+b | -g)=0.8




Bayes’Nets: Big Picture




Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:

= Unless there are only a few variables, the joint is WAY too
big to represent explicitly

= Hard to learn (estimate) anything empirically about more
than a few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local
distributions (conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these
interactions are specified




Example Bayes’ Net: Insurance




Example Bayes’ Net: Car

alternator fanbelt
broken broke

fuel line starter
blocked hroke



Graphical Model Notation

(unobserved)

= Nodes: variables (with domains) 2 &
= Can be assigned (observed) or unassigned - > X

= Arcs: interactions

= Similar to CSP constraints @
®» |ndicate “direct influence” between variables
Toothache @

= Formally: encode conditional independence
(more later)

" For now: imagine that arrows mean
direct causation (in general, they don’t!)



Example: Coin Flips

" N independent coin flips

" No interactions between variables: absolute independence



Example: Traffic

= Variables:
= R:ltrains
= T: There is traffic

" Model 1: independence = Model 2: rain causes traffic

.

= Why is an agent using model 2 better?



Example: Traffic Il

= Let’s build a causal graphical model!

. -
. Varisbles [”/4 i s

= T: Traffic [/ /
'/. ‘OLDO- |

= R:ltrains

= L:Low pressure [ leool.
= D: Roof drips
= B: Ballgame
= C: Cavity




= Variables
= B: Burglary
= A: Alarm goes off
= M: Mary calls
= J:John calls
= E: Earthquake!

Example: Alarm Network

N—or
®
—-—
—
=

758




Bayes’ Net Semantics




Bayes’ Net Semantics 3=3)

= Aset of nodes, one per variable X
= Adirected, acyclic graph

= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values

_P(X|Ga]_ .. .an)

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

T
P(z1,z2,...2n) = [] P(=z;|parents(X;))
i=1

= Example: @
Toothache @

P(+cavity, +catch, -toothache)




Probabilities in BNs @@

= Why are we guaranteed that setting
T
P(z1,22,...20) = [| P(=z;|parents(X;))

i=1
results in a proper joint distribution?

n
= Chain rule (valid for all distributions): P(zy1,@2,...2n) = [ P(zilz1.. . xi—1)

= Assume conditional independences: P(zg|ze, .. 2i_1) = Pz parents(X;))

T
— Consequence:  P(zq,22,...zn) = || P(xi|parents(X;))
i=1

= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies



Example: Coin Flips

P(X1) P(X>2) P(Xn)
h |05 h |05 o h |05
t |05 t |05 t |05

P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be
represented by a Bayes ’ net with no arcs.



P(R)

Example: Traffic

+r

1/4

3/4

+r

P(T|R)

+t

3/4

1/4

+t

1/2

1/2

P(+r, —t) =




Example: Alarm Network

Burglary

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a - 0.1
-a +j 0.05
-a - 0.95

A M | P(M]A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)
+e | 0.002

-e | 0.998

B | E | A | P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b -e | +a 0.001
-b | -e -a 0.999




= Causal direction

P(R)

+r

1/4

3/4

P(T|R)

Example: Traffic

+r

+t

3/4

1/4

+t

1/2

P(T, R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2




&

Example: Reverse Traffic

= Reverse causality?

P(T)

+t

9/16

7/16

P(R|T)

_

|

—

.
“' " [ ] /

+t

+r

1/3

2/3

+r

1/7

P(T, R)

+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

6/7

—~

= 2
“\*JFLS




Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)

= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(x;|z,...2_1) = P(x;|parents(X;))



Bayes’ Nets

= So far: how a Bayes’ net encodes a joint
distribution

= Next: how to answer queries about that
distribution

= Today:

= First assembled BNs using an intuitive notion of
conditional independence as causality

= Then saw that key property is conditional independence

= Main goal: answer queries about conditional
independence and influence

= After that: how to answer numerical queries
(inference)




