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FA23 announcement: 
Midterm logistics form is 
on the website! Please 
fill it out ASAP if you 
need an alternate-time 
or remote exam.



Review: Probabilistic Inference

§ Probabilistic inference: compute a desired 
probability from other known probabilities (e.g. 
conditional from joint)

§ We generally compute conditional probabilities 
§ P(on time | no reported accidents) = 0.90
§ These represent the agent’s beliefs given the evidence

§ Probabilities change with new evidence:
§ P(on time | no accidents, 5 a.m.) = 0.95
§ P(on time | no accidents, 5 a.m., raining) = 0.80
§ Observing new evidence causes beliefs to be updated



Review: Inference by Enumeration
§ General case:

§ Evidence variables: 
§ Query* variable:
§ Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

§ We want:

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H to get joint 
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z



Review: Inference by Enumeration

§ P(W)?

§ P(W | winter)?

§ P(W | winter, hot)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



§ Obvious problems:

§ Worst-case time complexity O(dn) 

§ Space complexity O(dn) to store the joint distribution

Review: Inference by Enumeration



Review: The Product Rule

§ Sometimes have conditional distributions but want the joint



Review: The Product Rule

§ Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06



Review: The Chain Rule

§ More generally, can always write any joint distribution as an 
incremental product of conditional distributions

§ Why is this always true?



Probabilistic Models

§ Models describe how (a portion of) the world works

§ Models are always simplifications
§ May not account for every variable
§ May not account for all interactions between variables
§ “All models are wrong; but some are useful.”

– George E. P. Box

§ What do we do with probabilistic models?
§ We (or our agents) need to reason about unknown 

variables, given evidence
§ Example: explanation (diagnostic reasoning)
§ Example: prediction (causal reasoning)
§ Example: value of information



Independence



§ Two variables are independent if:

§ This says that their joint distribution factors into a product two 
simpler distributions

§ Another form:

§ We write: 

§ Independence is a simplifying modeling assumption

§ Empirical joint distributions: at best “close” to independent

§ What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence



Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Example: Independence

§ N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5



Conditional Independence



Conditional Independence

§ P(Toothache, Cavity, Catch)

§ If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
§ P(+catch | +toothache, +cavity) = P(+catch | +cavity)

§ The same independence holds if I don’t have a cavity:
§ P(+catch | +toothache, -cavity) = P(+catch| -cavity)

§ Catch is conditionally independent of Toothache given Cavity:
§ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

§ Equivalent statements:
§ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
§ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
§ One can be derived from the other easily



Conditional Independence

§ Unconditional (absolute) independence very rare (why?)

§ Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

§ X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Conditional Independence

§ What about this domain:

§ Traffic
§ Umbrella
§ Raining



Conditional Independence

§ What about this domain:

§ Fire
§ Smoke
§ Alarm



Conditional Independence and the Chain Rule

§ Chain rule: 

§ Trivial decomposition:

§ With assumption of conditional independence:

§ Bayes’nets / graphical models help us express conditional independence assumptions



Ghostbusters Chain Rule

§ Each sensor depends only
on where the ghost is

§ That means, the two sensors are 
conditionally independent, given the 
ghost position

§ T: Top square is red
B: Bottom square is red
G: Ghost is in the top

§ Givens:
P( +g ) = 0.5
P(  -g ) = 0.5
P( +t  | +g ) = 0.8
P( +t  |  -g ) = 0.4
P( +b | +g ) = 0.4
P( +b |  -g ) = 0.8

P(T,B,G) = P(G) P(T|G) P(B|G)

T B G P(T,B,G)

+t +b +g 0.16

+t +b -g 0.16

+t -b +g 0.24

+t -b -g 0.04

-t +b +g 0.04

-t +b -g 0.24

-t -b +g 0.06

-t -b -g 0.06



Bayes’Nets: Big Picture



Bayes’ Nets: Big Picture

§ Two problems with using full joint distribution tables 
as our probabilistic models:
§ Unless there are only a few variables, the joint is WAY too 

big to represent explicitly
§ Hard to learn (estimate) anything empirically about more 

than a few variables at a time

§ Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local 
distributions (conditional probabilities)
§ More properly called graphical models
§ We describe how variables locally interact
§ Local interactions chain together to give global, indirect 

interactions
§ For about 10 min, we’ll be vague about how these 

interactions are specified



Example Bayes’ Net: Insurance



Example Bayes’ Net: Car



Graphical Model Notation

§ Nodes: variables (with domains)
§ Can be assigned (observed) or unassigned 

(unobserved)

§ Arcs: interactions
§ Similar to CSP constraints
§ Indicate “direct influence” between variables
§ Formally: encode conditional independence 

(more later)

§ For now: imagine that arrows mean 
direct causation (in general, they don’t!)



Example: Coin Flips

§ N independent coin flips

§ No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic

§ Variables:
§ R: It rains
§ T: There is traffic

§ Model 1: independence

§ Why is an agent using model 2 better?

R

T

R

T

§ Model 2: rain causes traffic



§ Let’s build a causal graphical model!
§ Variables

§ T: Traffic
§ R: It rains
§ L: Low pressure
§ D: Roof drips
§ B: Ballgame
§ C: Cavity

Example: Traffic II



Example: Alarm Network

§ Variables
§ B: Burglary
§ A: Alarm goes off
§ M: Mary calls
§ J: John calls
§ E: Earthquake!



Bayes’ Net Semantics



Bayes’ Net Semantics

§ A set of nodes, one per variable X

§ A directed, acyclic graph

§ A conditional distribution for each node

§ A collection of distributions over X, one for each 
combination of parents’ values

§ CPT: conditional probability table

§ Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

§ Bayes’ nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:

§ Example:



Probabilities in BNs

§ Why are we guaranteed that setting

results in a proper joint distribution?  

§ Chain rule (valid for all distributions): 

§ Assume conditional independences: 

à Consequence:

§ Not every BN can represent every joint distribution

§ The topology enforces certain conditional independencies



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn



Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99



Example: Traffic

§ Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Example: Reverse Traffic

§ Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Causality?

§ When Bayes’ nets reflect the true causal patterns:
§ Often simpler (nodes have fewer parents)
§ Often easier to think about
§ Often easier to elicit from experts

§ BNs need not actually be causal
§ Sometimes no causal net exists over the domain 

(especially if variables are missing)
§ E.g. consider the variables Traffic and Drips
§ End up with arrows that reflect correlation, not causation

§ What do the arrows really mean?
§ Topology may happen to encode causal structure
§ Topology really encodes conditional independence



Bayes’ Nets

§ So far: how a Bayes’ net encodes a joint 
distribution

§ Next: how to answer queries about that 
distribution
§ Today: 

§ First assembled BNs using an intuitive notion of 
conditional independence as causality

§ Then saw that key property is conditional independence
§ Main goal: answer queries about conditional 

independence and influence 

§ After that: how to answer numerical queries 
(inference)


