CS 188: Artificial Intelligence

Bayes' Nets

FA23 announcement: Midterm logistics form is on the website! Please fill it out ASAP if you need an alternate-time or remote exam.

Fall 2023

Review: Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
- P (on time | no reported accidents) $=0.90$
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- P(on time | no accidents, 5 a.m.) $=0.95$
- P(on time | no accidents, 5 a.m., raining) $=0.80$
- Observing new evidence causes beliefs to be updated

Review: Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:

- We want:
* Works fine with multiple query variables, too

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 3: Normalize
of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{X_{1}, X_{2}, \ldots X_{n}})
$$

Review: Inference by Enumeration

- $\mathrm{P}(\mathrm{W})$?
- P(W | winter)?
- P(W | winter, hot)?

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Review: Inference by Enumeration

- Obvious problems:
- Worst-case time complexity $\mathrm{O}\left(\mathrm{d}^{\mathrm{n}}\right)$
- Space complexity $\mathrm{O}\left(\mathrm{d}^{\mathrm{n}}\right)$ to store the joint distribution

Review: The Product Rule

- Sometimes have conditional distributions but want the joint

$$
P(y) P(x \mid y)=P(x, y) \quad \Longleftrightarrow \quad P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

Review: The Product Rule

$$
P(y) P(x \mid y)=P(x, y)
$$

- Example:

$P(W)$	
R	P
sun	0.8
rain	0.2

$P(D \mid W)$
D
W
wet
dry
sun
wet
dry
rain
0.1

$P(D, W)$
D
W
wet
sun
dry
sun
wet
dry
rain
rain

Review: The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
\end{aligned}
$$

- Why is this always true?

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
- George E. P. Box

- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Example: value of information

Independence

Independence

- Two variables are independent if:

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$
\forall x, y: P(x \mid y)=P(x)
$$

- We write: $\quad X \Perp Y$
- Independence is a simplifying modeling assumption
- Empirical joint distributions: at best "close" to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?

Example: Independence?

$P_{1}(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$P(T)$

T	P
hot	0.5
cold	0.5

T	W	P
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Example: Independence

- N fair, independent coin flips:

$P\left(X_{1}\right)$
H
T

$P\left(X_{2}\right)$

H	0.5
T	0.5

$P\left(X_{n}\right)$

H	0.5
T	0.5

Conditional Independence

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- $\mathrm{P}(+$ catch | +toothache, +cavity) $=\mathrm{P}(+$ catch | +cavity)
- The same independence holds if I don't have a cavity:
- $\mathrm{P}(+$ catch | +toothache, -cavity $)=\mathrm{P}(+$ catch | -cavity $)$
- Catch is conditionally independent of Toothache given Cavity:
- P(Catch | Toothache, Cavity) $=\mathrm{P}($ Catch | Cavity $)$

- Equivalent statements:
- P(Toothache | Catch , Cavity) $=\mathrm{P}$ (Toothache | Cavity)
- P (Toothache, Catch | Cavity) $=\mathrm{P}$ (Toothache | Cavity) P (Catch | Cavity)
- One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$
X \Perp Y \mid Z
$$

if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

or, equivalently, if and only if

$$
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

Conditional Independence

- What about this domain:
- Traffic
- Umbrella
- Raining

Conditional Independence

- What about this domain:
- Fire
- Smoke
- Alarm

Conditional Independence and the Chain Rule

- Chain rule:

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots
$$

- Trivial decomposition:
$P($ Traffic, Rain, Umbrella $)=$ P (Rain) P (Traffic \mid Rain $) P$ (Umbrella|Rain, Traffic)
- With assumption of conditional independence:

$P($ Traffic, Rain, Umbrella $)=$ P (Rain) P (Traffic|Rain) P (Umbrella|Rain)
- Bayes'nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is

ors are t, given the	$P(T, B, G)=P(G) P(T \mid G) P(B \mid G)$			
	T	B	G	$\mathrm{P}(\mathrm{T}, \mathrm{B}, \mathrm{G})$
	+t	+b	+g	0.16
	+t	+b	-g	0.16
0.50	+t	-b	+g	0.24
	+t	-b	-g	0.04
	-t	+b	+g	0.04
0.50	-t	+b	-g	0.24
	-t	-b	+g	0.06
	-t	-b	-g	0.06

Bayes'Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Similar to CSP constraints
- Indicate "direct influence" between variables
- Formally: encode conditional independence (more later)
- For now: imagine that arrows mean
 direct causation (in general, they don't!)

Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
- R: It rains
- T : There is traffic

- Model 1: independence

- Model 2: rain causes traffic

- Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model!
- Variables
- T:Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- CPT: conditional probability table

$$
P\left(X \mid A_{1} \ldots A_{n}\right)
$$

- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- Example:

$$
P(+ \text { cavity, +catch, -toothache })
$$

Probabilities in BNs

- Why are we guaranteed that setting

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)$
- Assume conditional independences: $\quad P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
\rightarrow Consequence: $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies

Example: Coin Flips

$$
P(h, h, t, h)=
$$

Example: Traffic

Example: Alarm Network

Example: Traffic

- Causal direction

$P(T, R)$
+r
+t $3 / 16$ $+r$ -t $1 / 16$ $-r$ +t $6 / 16$ $-r$ -t $6 / 16$

Example: Reverse Traffic

- Reverse causality?

$P(T, R)$

$+r$	+t	$3 / 16$
+r	-t	$1 / 16$
-r	+t	$6 / 16$
-r	-t	$6 / 16$

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain
 (especially if variables are missing)
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$
P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
- Today:
- First assembled BNs using an intuitive notion of conditional independence as causality
- Then saw that key property is conditional independence
- Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

