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Review: Bayes’ Net Semantics



Probability Recap

§ Conditional probability

§ Product rule

§ Chain rule 

§ X, Y independent if and only if:

§ X and Y are conditionally independent given Z if and only if:



Bayes’ Nets

§ A Bayes’ net is an
efficient encoding
of a probabilistic
model of a domain

§ Questions we can ask:

§ Inference: given a fixed BN, what is P(X | e)?

§ Representation: given a BN graph, what kinds of distributions can it encode?

§ Modeling: what BN is most appropriate for a given domain?



Bayes’ Net Semantics

§ A set of nodes, one per variable X

§ A directed, acyclic graph

§ A conditional distribution for each node

§ A collection of distributions over X, one for each 
combination of parents’ values

§ CPT: conditional probability table

§ Description of a noisy “causal” process
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A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

§ Bayes’ nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:

§ Example:



Probabilities in BNs

§ Why are we guaranteed that setting

results in a proper joint distribution?  

§ Chain rule (valid for all distributions): 

§ Assume conditional independences: 

à Consequence:

§ Not every BN can represent every joint distribution

§ The topology enforces certain conditional independencies



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.
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Example: Traffic
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Example: Alarm Network

Burglary Earthqk
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Example: Traffic

§ Causal direction
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Example: Reverse Traffic

§ Reverse causality?
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Causality?

§ When Bayes’ nets reflect the true causal patterns:
§ Often simpler (nodes have fewer parents)
§ Often easier to think about
§ Often easier to elicit from experts

§ BNs need not actually be causal
§ Sometimes no causal net exists over the domain 

(especially if variables are missing)
§ E.g. consider the variables Traffic and Drips
§ End up with arrows that reflect correlation, not causation

§ What do the arrows really mean?
§ Topology may happen to encode causal structure
§ Topology really encodes conditional independence



Size of a Bayes’ Net

§ How big is a joint distribution over N 
Boolean variables?

2N

§ How big is an N-node net if nodes 
have up to k parents?

O(N * 2k+1)

§ Both give you the power to calculate

§ BNs: Huge space savings!

§ Also easier to elicit local CPTs

§ Also faster to answer queries (coming)



Bayes’ Nets

§ So far: how a Bayes’ net encodes a joint 
distribution

§ Next: how to answer queries about that 
distribution
§ Last Time: 

§ First assembled BNs using an intuitive notion of 
conditional independence as causality

§ Then saw that key property is conditional independence
§ Main goal: answer queries about conditional 

independence and influence 

§ Today: how to answer numerical queries 
(inference)



Bayes’ Nets

§ Representation

§ Conditional Independences

§ Probabilistic Inference

§ Learning Bayes’ Nets from Data



Bayes Nets: Assumptions

§ Assumptions we are required to make to define the 
Bayes net when given the graph:

§ Beyond above “chain rule à Bayes net” conditional 
independence assumptions 

§ Often additional conditional independences

§ They can be read off the graph

§ Important for modeling: understand assumptions made 
when choosing a Bayes net graph

P (xi|x1 · · ·xi�1) = P (xi|parents(Xi))



Example

§ Conditional independence assumptions directly from simplifications in chain rule:

§ Additional implied conditional independence assumptions?

X Y Z W



Independence in a BN

§ Important question about a BN:
§ Are two nodes independent given certain evidence?
§ If yes, can prove using algebra (tedious in general)
§ If no, can prove with a counter example
§ Example:

§ Question: are X and Z necessarily independent?
§ Answer: no.  Example: low pressure causes rain, which causes traffic.
§ X can influence Z, Z can influence X (via Y)
§ Addendum: they could be independent: how?

X Y Z



D-separation: Outline



D-separation: Outline

§ Study independence properties for triples

§ Analyze complex cases in terms of member triples

§ D-separation: a condition / algorithm for answering such 
queries



Causal Chains

§ This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

§ Guaranteed X independent of Z ?  No!

§ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

§ Example:

§ Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

§ In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



Causal Chains

§ This configuration is a “causal chain” § Guaranteed X independent of Z given Y?

§ Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Common Cause

§ This configuration is a “common cause” § Guaranteed X independent of Z ?  No!

§ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

§ Example:

§ Project due causes both forums busy 
and lab full 

§ In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy Z: Lab full



Common Cause

§ This configuration is a “common cause” § Guaranteed X and Z independent given Y?

§ Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy Z: Lab full



Common Effect

§ Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

§ Are X and Y independent?

§ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

§ Still need to prove they must be (try it!)

§ Are X and Y independent given Z?

§ No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

§ This is backwards from the other cases

§ Observing an effect activates influence between 
possible causes.

X: Raining Y: Ballgame



The General Case



The General Case

§ General question: in a given BN, are two variables independent 
(given evidence)?

§ Solution: analyze the graph

§ Any complex example can be broken
into repetitions of the three canonical cases



Reachability

§ Recipe: shade evidence nodes, look 
for paths in the resulting graph

§ Attempt 1: if two nodes are connected 
by an undirected path not blocked by 
a shaded node, they are conditionally 
independent

§ Almost works, but not quite
§ Where does it break?
§ Answer: the v-structure at T doesn’t count 

as a link in a path unless “active”

R

T

B

D

L



Active / Inactive Paths

§ Question: Are X and Y conditionally independent given 
evidence variables {Z}?
§ Yes, if X and Y “d-separated” by Z
§ Consider all (undirected) paths from X to Y
§ No active paths = independence!

§ A path is active if each triple is active:
§ Causal chain A ® B ® C where B is unobserved (either direction)
§ Common cause A ¬ B ® C where B is unobserved
§ Common effect (aka v-structure)

A ® B ¬ C where B or one of its descendents is observed

§ All it takes to block a path is a single inactive segment
§ Note: These triples are all active (and similar for the other cases, i.e. the 

variables on either end of the triple can be observed or unobserved)

Active Triples Inactive Triples



§ Query:

§ Check all (undirected!) paths between        and 
§ If one or more active, then independence not guaranteed

§ Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

D-Separation

Xi �� Xj |{Xk1 , ..., Xkn}

Xi �� Xj |{Xk1 , ..., Xkn}

?

Xi �� Xj |{Xk1 , ..., Xkn}



Example

Yes R

T

B
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Example
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T’

Yes

Yes

Yes



Example

§ Variables:
§ R: Raining
§ T: Traffic
§ D: Roof drips
§ S: I’m sad

§ Questions:

T

S

D

R

Yes



Structure Implications

§ Given a Bayes net structure, can run d-
separation algorithm to build a complete list of 
conditional independences that are necessarily 
true of the form

§ This list determines the set of probability 
distributions that can be represented 

Xi �� Xj |{Xk1 , ..., Xkn}



Computing All Independences
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X
Y

Z

{X �� Y,X �� Z, Y �� Z,

X �� Z | Y,X �� Y | Z, Y �� Z | X}

Topology Limits Distributions

§ Given some graph topology 
G, only certain joint 
distributions can be 
encoded

§ The graph structure 
guarantees certain 
(conditional) independences

§ (There might be more 
independence)

§ Adding arcs increases the 
set of distributions, but has 
several costs

§ Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z

{X �� Z | Y }

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

{}



Bayes Nets Representation Summary

§ Bayes nets compactly encode joint distributions

§ Guaranteed independencies of distributions can be 
deduced from BN graph structure

§ D-separation gives precise conditional independence 
guarantees from graph alone

§ A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable until 
you inspect its specific distribution



Bayes’ Nets

§ Representation

§ Conditional Independences

§ Probabilistic Inference
§ Enumeration (exact, exponential complexity)
§ Variable elimination (exact, worst-case

exponential complexity, often better)
§ Probabilistic inference is NP-complete
§ Sampling (approximate)

§ Learning Bayes’ Nets from Data


