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Bayes’ Nets

JRepresentation
JConditionaI Independences

= Probabilistic Inference
" Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
" Probabilistic inference is NP-complete
= Sampling (approximate)

" |earning Bayes’ Nets from Data



Inference

" |nference: calculating some = Examples:
useful quantity from a joint

probability distribution " Posterior probability

P(Q|E1 =e1,... B, = ¢g)

= Most likely explanation:

argmax, P(Q =q|E1 =eq...)




Inference by Enumeration

* Works fine with

" General case: = We want: multiple query
= Evidence variables: Fi...E,=e1...¢e X1, Xo X, variables, too
, X0, ...
= Query* variable:
Query @ Al variables P(Qle1...ex)

= Hidden variables: Hy...H,

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence
with the evidence 1
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Inference by Enumeration in Bayes’ Net

= Given unlimited time, inference in BNs is easy e e
= Reminder of inference by enumeration by example:
P(B |+ j,+m) xp P(B,+j,+m) °
—ZP (B,e,a,+j7,+m)
= 3 PBYP(©)P(alB,€)P(+la) Pl

=P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a)



Inference by Enumeration?




Inference by Enumeration vs. Variable Elimination

= Why is inference by enumeration so slow? = Idea: interleave joining and marginalizing!

= You join up the whole joint distribution before = Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration

= First we’ll need some new notation: factors



Factor Zoo

/ \




Factor Zoo |

P(T, W)
= Joint distribution: P(X,Y) - W P
= Entries P(x,y) for all x, y hot sun | 0.4
" Sumstol hot rain | 0.1
cold sun 0.2
cold rain | 0.3
= Selected joint: P(x,Y)
= A slice of the joint distribution P(cold, W)
= Entries P(x,y) for fixed x, all y T W P
= Sums to P(x) cold sun | 0.2
cold rain | 0.3
= Number of capitals =

dimensionality of the table




Factor Zoo |l

= Single conditional: P(Y | x)

P(W |cold)
= Entries P(y | x) for fixed x, all
= Sumstol T W P
cold sun 0.4
cold rain 0.6
P(W|T)
= Family of conditionals: T W P
hot sun 0.8
P(Y | X) — —t 5| P(W|hot)
= Multiple conditionals ° rain | Y]]
= Entries P(y | x) forall x, y cold sun_ | 04 P(W|cold)
= Sums to |X| cold rain 0.6




Factor Zoo llI

= Specified family: P(y | X)
" Entries P(y | x) for fixedy,
but for all x
= Sums to ... who knows!

P(rain|T')

T W P
hot rain | 0.2 }: P(rain|hot)

P(rain|cold)

cold rain 0.6




Factor Zoo Summary

" |n general, when we write P(Y; ... Yy | X; ... Xy)
= |tisa ‘factor,” a multi-dimensional array
" [ts values are P(y; ... Yy | X1 ... Xy)

= Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

at. Aﬂ/éﬂé’y; edu




Example: Traffic Domain

= Random Variables ﬁ(Ro)l
* R: Raining (R) |09
= T: Traffic P(T|R)
" |: Late for class! @ I: +tt 8223
-r +t 0.1
P(L) — 7 e -r -t | 0.9
B Z Pt L) +tP(I:r||T)o.3
™t + | -1 | 0.7
=Y P(r)P(t|r)P(L|t) T




Variable Elimination (VE)




Inference by Enumeration: Procedural Outline

" Track objects called factors
= |nitial factors are local CPTs (one per node)

M
P(R) P(T\R)  P(L|T) S,?“ —
>

-r 0.9 +r -t | 0.2 +t -| 0.7
-r +t | 0.1 -t +l 0.1

- | -t |09 -t -1 | 0.9 Q

= Any known values are selected
= E.g.if we know [, = 4/, the initial factors are

P(R) P(T|R)  P(+4T)
+r 0.1 +r | +t [ 0.8 +t +| 0.3
-r 0.9 +r -t | 0.2 -t +| 0.1

-r + [ 0.1
-r -t |1 0.9

= Procedure: Join all factors, eliminate all hidden variables, normalize



Operation 1: Join Factors

= First basic operation: joining factors

=  Combining factors:
= Just like a database join % —1
= Get all factors over the joining variable

= Build a new factor over the union of the variables
involved

= Example: Joinon R

(%) P(R) x P(T|R) =—=> P(RT)

+r 0.1 +r | +t (0.8 +r | +t | 0.08

-r 0.9 +r | -t [0.2 +r | -t | 0.02

G o |+t |01 r | +t | 0.09
-r| -t [0.9 -r | -t | 0.81

= Computation for each entry: pointwise products V1, ¢ : P(T, t) - P(T) ' P(t|?“)




Example: Multiple Joins

(-
L §




Example: Multiple Joins f.».

T & |

+r | 0.1

+r] +t ] 0.08
P(TIR) > ] t]002 >
+r | +t (0.8 | +t]0.09
+r |t [0.2 -r | -t[0.81 R, T P(R,T, L)
or |+t (0.1 +r | +t | + ]0.024
ol -t10.9 j +r | +t -1 | 0.056

+r -t + | 0.002

P(L|T) P(L|T) +r -t -1 | 0.018
+t | +1 |0.3 +t | +1 |0.3 -r +t + | 0.027
+t | -1 |0.7 +t | -l (0.7 -r +t -| 0.063
-t | 41 |0.1 -t | +l [0.1 -r -t + | 0.081
-t | -l 0.9 -t | -l {0.9 -r -t | 0.729




Operation 2: Eliminate

= Second basic operation: marginalization

= Take a factor and sum out a variable
= Shrinks a factor to a smaller one

= A projection operation

= Example:
P(R,T)
wTsoss] sum R P

+r | -t | 0.02 |:> +t

-r | +t | 0.09 -1
-r| -t | 0.81




P(R,T,L)

Multiple Elimination

Lo

+r

+t

+l

0.024

+r

+t

0.056

+r

-t

+l

0.002

+r

-t

0.018

+t

+l

0.027

0.063

+l

0.081

1 1 1 1
- - - -

0.729

Sum
out R

P(T, L)

0.051

0.119

0.083

0.747

Sum
out T

®

P(L)

+ | 0.134

-l 10.886




Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Q

(



Marginalizing Early (= Variable Elimination)




Traffic Domain

(R) P(L) =7

@ " Inference by Enumeration = Variable Elimination

© =SS (LI P P(H) =Y P(L|t) Y P(r)P(|r)
t r \_'_’ t r \ J
Joinonr Join !)n r
| 7 J \ 7 J
Joinont Eliminate r
T 4 | q J
Eliminate r Join on t
¥ '] | J

|
Eliminate t Eliminate t



P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8
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-r

+t

0.1

-r

-t

0.9
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+t

+l

0.3

+t

0.7

-t
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0.1

-t

0.9

Join R

—>

Marginalizing Early! (aka VE)

P(R,T)
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Evidence

= |f evidence, start with factors that select that evidence

= No evidence uses these initial factors:

P(R)  P(T|R)  P(LIT) NA

+r 0.1 +r | +t | 0.8 +t + [ 0.3

che Rl o [ A
T | t |09 t | -1 |09

—

=

| -(x
. ComputingP(L| -+ 'r)the initial factors become: 1&%’
wﬂ
P(+r) P(T|+r) P(L|T) &}/‘ 7
+r 0.1 +r | +t |08 +t | + |03 =
+r | -t | 0.2 + | -l |07

t | + |01 ""3~ & ==
-t | 0.9 S@

= We eliminate all vars other than query + evidence =>



Evidence |l

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we would end up with:

P("‘Ta L) Normalize P(L ‘|‘T)

+r | +l | 0.026 B :: +l | 0.26
+r| -l | 0.074 -l 1 0.74

= To get our answer, just normalize this!

= That's it!



General Variable Elimination

Query: P(Q|E1 =e1,... L = ek) e

Start with initial factors: = |
= Local CPTs (but instantiated by evidence) o |

While there are still hidden variables . .

(not Q or evidence):
= Pick a hidden variable H
= Join all factors mentioning H i Q ! .

= Eliminate (sum out) H

Join all remaining factors and normalize
(- X5



Example

P(B|j,m) o« P(B,j,m)

P(B) P(E) P(A|B, E) P(lA)  P(m|A)
Choose A
P(A|B,E)
P(j|A) X > P(j,m,AlB,E) [ ¥ > P(j,m|B, L)
P(m|A)

P(B)

P(E) P(j,m|B, E)




Example

P(B) P(E) P(j,m|B, E)
Choose E
PLE) :><> P(j,m, E|B) jz > P(j,m|B)
P(j,m|B, F) y
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X > P(j,m7B) Normalize > P(B’j, WL)



Same Example in Equations

P(B|j,m) o« P(B,j,m)

P(B)

P(E) P(A|B, E) P(jlA)  P(m|A)

P(B|j,m)

P(B,j,m)
ZP(Bajamaeaa’)
€,a

> P(B)P(e)P(alB,e)P(jla) P(m|a)
> P(B)P(e)y_ P(alB,e)P(jla)P(m|a)
> P(B)P(e)f1(B,e,j,m)

P(B)»_ P(e)f1(B,e,j,m)
P(B)fQ(Baja m)

marginal obtained from joint by summing out
use Bayes’ net joint distribution expression
use x*(y+z) = xy + xz

joining on a, and then summing out gives f;
use x*(y+z) =xy + xz

joining on e, and then summing out gives f,

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Another Variable Elimination Example

Query: P(X3|Y1 = y1,Ye = y2, Y3 = y3)
Start by inserting evidence, which gives the following initial factors:
p(2)p(X1|2)p(X2| Z)p(Xs| Z)p(y1| X1)p(y2]| X2)p(ys| Xs)

Eliminate X, this introduces the factor fi(Z,y1) = El_l p(z1|Z)p(y1|z1), and
we are left with:

P(Z) f1(Z,y1)p(X2| Z)p(X3]| Z)p(y2| X2)p(y3| X3)

Eliminate Xo, this introduces the factor fa(Z,y2) = >_,, p(72|Z)p(y2|z2), and
we are left with:

P(2) f1(Z,y1) fo(Z,y2)p(X3]| Z)p(y3| X3)

Eliminate Z, this introduces the factor f3(y1,y2, X3) = >, p(2) f1(2, 1) f2(2, y2)p(X3|2),
and we are left:

p(y3| X3), f3(y1, y2, X3)

No hidden variables left. Join the remaining factors to get:

fa(y1,y2,y3, X3) = P(ys| X3) f3(y1, y2, X3).

Normalizing over X3 gives P(X3|y1,y2,y3)-

Computational complexity critically
depends on the largest factor being
generated in this process. Size of factor
= number of entries in table. In
example above (assuming binary) all
factors generated are of size 2 --- as
they all only have one variable (Z, Z,
and X; respectively).



Variable Elimination Ordering

=  For the query P(X,|yq,-..¥,)) work through the following two different orderings
as done in previous slide: Z, Xy, ..., X.; and Xy, ..., X, .1, Z. What is the size of the
maximum factor generated for each of the orderings?

= Answer: 2" versus 22 (assuming binary)

= |n general: the ordering can greatly affect efficiency.



VE: Computational and Space Complexity

* The computational and space complexity of variable elimination is
determined by the largest factor

* The elimination ordering can greatly affect the size of the largest factor.
= E.g., previous slide’s example 2" vs. 2

" Does there always exist an ordering that only results in small factors?
= No!



Worst Case Complexity?

= CSP:

(z1VaoV-z3)A(—x1VEsVzg) A(xoVxoVEg) A(mx3VxgVzs)A(xeVesVar)A(xaVasVeg) A(—xsVagVx7)AN(—xsV-xgVer)

P(X;=0)=P(X; = 1) = 0.5
Y, = X,V Xo VX5

Y = = X5V X V X7

YLQ =Y AYs

Y78 =Y A Yy

e

Z — Yl.‘-).:f-.‘l N Y:"),()'.T.B

= |f we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

= Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.



Polytrees

= A polytree is a directed graph with no undirected cycles

" For poly-trees you can always find an ordering that is efficient
= Tryit!!

= Cut-set conditioning for Bayes’ net inference

= Choose set of variables such that if removed only a polytree remains
= Exercise: Think about how the specifics would work out!



Bayes’ Nets

& Representation
« Conditional Independences

= Probabilistic Inference

J Enumeration (exact, exponential
complexity)

J Variable elimination (exact, worst-case
exponential complexity, often better)

J Inference is NP-complete

= Sampling (approximate)

" Learning Bayes’ Nets from Data



