CS 188: Artificial Intelligence Filtering and Applications

Recap: Reasoning Over Time

- Markov models

$$
P\left(X_{1}\right) \quad P\left(X_{t} \mid X_{t-1}\right)
$$

- Hidden Markov models

$P(E \mid X)$

X	E	P
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Today's Topics

- Exact Inference in Hidden Markov Models (HMMs)
- Approximate Inference in HMMs via Particle Filtering
- Applications in Robot Localization and Mapping
- Brief overview of Dynamic Bayes Nets

HMM Inference: Find State Given Evidence

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Idea: start with $P\left(X_{1}\right)$ and derive $B_{t}(X)$ in terms of $B_{t-1}(X)$
- Two steps: Passage of Time \& Observation

$$
B^{\prime}{ }_{4}(X)=P\left(X_{4} \mid e_{1: 3}\right)
$$

$$
B_{3}(X) \quad B_{4}(X)=P\left(X_{4} \mid e_{1: 4}\right)
$$

Inference: Base Cases

Passage of Time:

Observation:

$P\left(X_{1} \mid e_{1}\right)$

Passage of Time: Base Case

Have: $\quad P\left(X_{1}\right) \quad P\left(X_{2} \mid X_{1}\right)$
Want: $P\left(X_{2}\right)$

$$
\begin{aligned}
P\left(x_{2}\right) & =\sum_{x_{1}} P\left(x_{1}, x_{2}\right) \\
& =\sum_{x_{1}} P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right)
\end{aligned}
$$

Passage of Time: General Case

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ evidence to date) and transition prob.

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right) \quad P\left(X_{t+1} \mid x_{t}\right)
$$

- Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Or compactly:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) B\left(x_{t}\right)
$$

- Basic idea: beliefs get "pushed" through the transitions
- With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

- As time passes, uncertainty "accumulates"

$\mathrm{T}=1$

$\mathrm{T}=2$
(Transition model: ghosts usually go counter-clockwise)

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01
$T=4$					

Inference: Base Cases

Have: $P\left(X_{1}\right) \quad P\left(E_{1} \mid X_{1}\right)$
Want: $P\left(X_{1} \mid e_{1}\right)$

$$
\begin{aligned}
P\left(x_{1} \mid e_{1}\right) & =P\left(x_{1}, e_{1}\right) / P\left(e_{1}\right) \\
& \propto_{X_{1}} P\left(x_{1}, e_{1}\right) \\
& =P\left(x_{1}\right) P\left(e_{1} \mid x_{1}\right)
\end{aligned}
$$

Also can write as:

$$
P\left(x_{1} \mid e_{1}\right)=\frac{P\left(x_{1}\right) P\left(e_{1} \mid x_{1}\right)}{\sum_{x^{\prime}} P\left(x^{\prime}\right) P\left(e_{1} \mid x^{\prime}\right)}
$$

Observation: General Case

- Assume we have current belief $P(X \mid$ previous evidence $)$ and evidence model:

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right) \quad P\left(e_{t+1} \mid X_{t+1}\right)
$$

- Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto_{X_{t+1}} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

- Or, compactly:

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

Online Belief Updates

- Every time step, we start with current P(X| evidence)
- We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

- We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

- This is our updated belief $B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)$

- The forward algorithm does both at once (and doesn't normalize)

The Forward Algorithm

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- We can derive the following updates

$$
\begin{aligned}
P\left(x_{t} \mid e_{1: t}\right) & \propto X_{t} P\left(x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$

Example: Weather HMM

Passage of Time:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) B\left(x_{t}\right)
$$

Observation:

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

$B(+r)=0.5$
$B(-r)=0.5$

$$
\begin{aligned}
& \mathrm{B}^{\prime}(+\mathrm{r})=\text { ? } \\
& \mathrm{B}^{\prime}(-\mathrm{r})=?
\end{aligned}
$$

Example: Weather HMM

Passage of Time:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) B\left(x_{t}\right)
$$

Observation:

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

$B(+r)=0.5$
$B(-r)=0.5$

$$
\begin{aligned}
& \mathrm{B}^{\prime}(+r)=0.5^{*} 0.7+0.5^{*} 0.3=0.5 \\
& \mathrm{~B}^{\prime}(-\mathrm{r})=0.5^{*} 0.3+0.5^{*} 0.7=0.5
\end{aligned}
$$

Example: Weather HMM

Passage of Time:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) B\left(x_{t}\right)
$$

Observation:

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

$B(+r)=0.5$
$B(-r)=0.5$
$B(+r)=?$
$B(-r)=?$

Example: Weather HMM

Passage of Time:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) B\left(x_{t}\right)
$$

Observation:

$$
B\left(X_{t+1}\right) \propto X_{t+1} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

Example: Weather HMM

Passage of Time:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) B\left(x_{t}\right)
$$

Observation:

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

Today's Topics

- Exact Inference in Hidden Markov Models (HMMs)
- Approximate Inference in HMMs via Particle Filtering
- Applications in Robot Localization and Mapping
- Brief overview of Dynamic Bayes Nets

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes $|X|$ is too big to use exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous
- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, N << |X|
- Storing map from X to counts would defeat the point
- Example: if we had 16×16 grid

$$
\begin{gathered}
\mathbf{N}=10 \\
(3,3) \\
(2,3) \\
(3,3) \\
(3,2)
\end{gathered}
$$

vs

Particles:
$(3,3)$
$(2,3)$
$(3,3)$
$(3,2)$
$(3,3)$
$(3,2)$
$(1,2)$
$(3,3)$
$(3,3)$
$(2,3)$

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, N << |X|
- Storing map from X to counts would defeat the point
- $P(x)$ approximated by number of particles with value x
- So, many x may have $P(x)=0$!
- More particles, more accuracy
- For now, all particles have a weight of 1

Particle Filtering: Passage of Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

Particle Filtering: Passage of Time

- Each particle is moved by sampling its next position from the transition model

most likely returns $(3,2)$ but may return $(3,3)$

Particle Filtering: Passage of Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- This is like prior sampling - samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:
- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$
\begin{aligned}
w(x) & =P(e \mid x) \\
B(X) & \propto P(e \mid X) B^{\prime}(X)
\end{aligned}
$$

- As before, the probabilities don't sum to one, since all have been down-weighted (in fact they now sum to (N times) an approximation of $\mathrm{P}(\mathrm{e})$)

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Recap: Particle Filtering

- Particles: track samples of states rather than an explicit distribution

Video of Demo - Moderate Number of Particles

Video of Demo - One Particle

More Demos!

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01

Robot Localization

- In robot localization:
- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

Global localization with

40000

Particle Filter Localization (Laser)

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

Particle Filter SLAM - Video 1

Particle Filter SLAM - Video 2

Today's Topics

- Exact Inference in Hidden Markov Models (HMMs)
- Approximate Inference in HMMs via Particle Filtering
- Applications in Robot Localization and Mapping
- Brief overview of Dynamic Bayes Nets

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

- Dynamic Bayes nets are a generalization of HMMs

Pacman - Sonar (P4)

[Demo: Pacman - Sonar - No Beliefs(L14D1)]

Video of Demo Pacman Sonar Ghost DBN Model

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P\left(X_{T} \mid e_{1: T}\right)$ is computed

- Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $\mathrm{t}=1$ Bayes net
- Example particle: $\mathbf{G}_{\mathbf{1}}{ }^{\mathbf{a}}=(3,3) \mathbf{G}_{\mathbf{1}}{ }^{\mathbf{b}}=(5,3)$
- Elapse time: Sample a successor for each particle
- Example successor: $\mathbf{G}_{\mathbf{2}}{ }^{\mathbf{a}}=(2,3) \mathbf{G}_{\mathbf{2}}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $P\left(E_{1}{ }^{a} \mid G_{1}{ }^{a}\right) * P\left(E_{1}{ }^{\mathrm{b}} \mid \mathbf{G}_{1}{ }^{\mathrm{b}}\right)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

Conclusion

- We're done with Part II: Uncertainty!
- We've seen methods for:
- Representing uncertainty structure via Bayes Nets and multiple ways of doing inference
- Incorporating decision-making with uncertainty via Decision Nets
- Exploiting special structure of sequences / time via Markov Models and Hidden Markov Models and exact and approximate inference (Particle Filtering)
- Next up: Part III: Machine Learning!

