
Announcements

§ Happy Halloween! 👻 🎃

§ Homework 7 due today (Oct 31) at 11:59pm PT

§ Project 4 due next Monday (Nov 6) at 11:59pm PT



CS 188: Artificial Intelligence
Machine Learning: Naïve Bayes

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel, Anca Dragan, Sergey Levine, with some materials from A. Farhadi.  All CS188 materials are at http://ai.berkeley.edu.]



Machine Learning

§ Up until now: how use a model to make optimal decisions

§ Machine learning: how to acquire a model from data / experience
§ Learning parameters (e.g. probabilities)
§ Learning structure (e.g. BN graphs)
§ Learning hidden concepts (e.g. clustering)

§ What’s our roadmap?



Our Machine Learning Roadmap

§ Define the problem
§ Type of problem, domain (i.e. spam filtering, digit recognition)

§ Look at several learning approaches / models
§ Naïve Bayes (today), Perceptrons (Nov 2), Logistic Regression (Nov 7), Neural Networks (Nov 14)

§ How to find model parameters: Maximum Likelihood
§ Special cases: solve analytically (today)
§ In general: numerical optimization (Nov 9)

§ Themes throughout
§ Workflows & working with data
§ Overfitting and smoothing
§ Evaluation: tracking and forecasting progress
§ Applications



Multiple Types of Learning Problems

§ Supervised learning: correct answers for each training instance
§ Classification: learning predictor with discrete outputs
§ Regression: learning predictor with real-valued outputs

§ Reinforcement learning: reward sequence, no correct answers

§ Unsupervised learning: “just make sense of the data”



Classification



Classification and Machine Learning

§ Dataset: each data point, x, is associated with some label (aka class), y
§ Goal of classification: given inputs x, write an algorithm to predict labels y
§ Workflow of classification process:

§ Input is provided to you
§ Extract features from the input: attributes of the input that characterize each x and hopefully 

help with classification
§ Run some machine learning algorithm on the features: today, Naïve Bayes
§ Output a predicted label y

x (input) y
(predicted output)

Features 
(attributes of x)

Feature 
extraction

Machine 
learning



Training and Machine Learning

§ Big idea: ML algorithms learn patterns between features and labels from data
§ You don’t have to reason about the data yourself
§ You’re given training data: lots of example datapoints and their actual labels

Training: Learn patterns from labeled data, and 
periodically test how well you’re doing

Eventually, use your algorithm to 
predict labels for unlabeled data



Example: Spam Filter

§ Input: an email
§ Output: spam/ham

§ Setup:
§ Get a large collection of example emails, each labeled 

“spam” or “ham”
§ Note: someone has to hand label all this data!
§ Want to learn to predict labels of new, future emails

§ Features: The attributes used to make the ham / 
spam decision
§ Words: FREE!
§ Text Patterns: $dd, CAPS
§ Non-text: SenderInContacts, WidelyBroadcast
§ …

Dear Sir.

First, I must solicit your confidence in 
this transaction, this is by virture of its 
nature as being utterly confidencial and 
top secret. …

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
  FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, 
but when I plugged it in, hit the power 
nothing happened.



Example: Digit Recognition

§ Input: images / pixel grids
§ Output: a digit 0-9

§ Setup:
§ Get a large collection of example images, each labeled with a digit
§ Note: someone has to hand label all this data!
§ Want to learn to predict labels of new, future digit images

§ Features: The attributes used to make the digit decision
§ Pixels: (6,8)=ON
§ Shape Patterns: NumComponents, AspectRatio, NumLoops
§ …

0

1

2

1

??



Other Classification Tasks

§ Classification: given inputs x, predict labels (classes) y

§ Examples:
§ Object recognition
§ Input: images; classes: object type
§ Medical diagnosis

input: symptoms; classes: diseases
§ Automatic essay grading

input: document; classes: grades
§ Fraud detection

input: account activity; classes: fraud / no fraud
§ Customer service email routing
§ … many more

§ Classification is an important commercial technology!



Model-Based Classification



Model-Based Classification

§ Model-based approach
§ Build a model (e.g. Bayes’ net) where 

both the label and features are 
random variables

§ Instantiate any observed features
§ Query for the distribution of the label 

conditioned on the features

§ Challenges
§ What structure should the BN have?
§ How should we learn its parameters?



Naïve Bayes Model

§ Random variables in this Bayes’ net:
§ Y = The label
§ F1, F2, …, Fn = The n features

§ Probability tables in this Bayes’ net:
§ P(Y) = Probability of each label occurring, given no information about 

the features. Sometimes called the prior.
§ P(Fi|Y) = One table per feature. Probability distribution over a feature, 

given the label.

Y

F1 FnF2



Naïve Bayes Model

§ To perform training:
§ Use the training dataset to estimate the probability tables.
§ Estimate P(Y) = how often does each label occur?
§ Estimate P(Fi|Y) = how does the label affect the feature?

§ To perform classification:
§ Instantiate all features. You know the input features, so they’re your 

evidence.
§ Query for P(Y|f1, f2, …, fn). Probability of label, given all the input features. 

Use an inference algorithm (e.g. variable elimination) to compute this.

Y

F1 FnF2



Example: Naïve Bayes for Spam Filter

Y

F1 F2

Y: The label (spam or ham)

Y P(Y)

ham ?

spam ?

F1: A feature
(do I know the sender?)

F1 Y P(F1|Y)

yes ham ?

no ham ?

yes spam ?

no spam ?

F2: Another feature
(# of occurrences of FREE)

F2 Y P(F2|Y)

0 ham ?

1 ham ?

2 ham ?

0 spam ?

1 spam ?

2 spam ?

§ Step 1: Select a ML algorithm. We choose to model the problem with Naïve Bayes. 
§ Step 2: Choose features to use.



Example: Naïve Bayes for Spam Filter

F2: # of occurrences of FREE

F2 Y P(F2|Y)

0 ham 0.5

1 ham 0.5

2 ham 0.0

0 spam 0.25

1 spam 0.50

2 spam 0.25

§ Step 3: Training: Use training data to fill in the probability tables.

Training Data

# Email Text Label

1 Attached is my portfolio. ham

2 Are you free for a meeting tomorrow? ham

3 Free unlimited credit cards!!!! spam

4 Mail $10,000 check to this address spam

5 Sign up now for 1 free Bitcoin spam

6 Free money free money spam

F2: # of occurrences of FREE

F2 Y P(F2|Y)

0 ham

1 ham

2 ham

0 spam

1 spam

2 spam

Row 4: P(F2=0 | Y=spam) = 0.25 because 1 out of 4 spam emails contains “free” 0 times.
Row 5: P(F2=1 | Y=spam) = 0.50 because 2 out of 4 spam emails contains “free” 1 time.
Row 6: P(F2=2 | Y=spam) = 0.25 because 1 out of 4 spam emails contains “free” 2 times.



Example: Naïve Bayes for Spam Filter

Y

F1 F2

Y: The label (spam or ham)

Y P(Y)

ham 0.6

spam 0.4

F1: A feature
(do I know the sender?)

F1 Y P(F1|Y)

yes ham 0.7

no ham 0.3

yes spam 0.1

no spam 0.9

F2: Another feature
(# of occurrences of FREE)

F2 Y P(F2|Y)

0 ham 0.85

1 ham 0.07

2 ham 0.08

0 spam 0.75

1 spam 0.12

2 spam 0.13

§ Model trained on a larger dataset:



Example: Naïve Bayes for Spam Filter

Y

F1 F2

§ Step 4: Classification
§ Suppose you want to label this email from a known sender:

“Free food in Soda 430 today”
§ Step 4.1: Feature extraction:

§ F1 = yes, known sender
§ F2 = 1 occurrence of “free”



Example: Naïve Bayes for Spam Filter

§ Step 4.2: Inference
§ Instantiate features (evidence):

§ F1 = yes
§ F2 = 1

§ Compute joint probabilities:
§ P(Y = spam, F1 = yes, F2 = 1) = P(Y = spam)  P(F1 = yes | spam) P(F2 = 1 | spam)

= 0.4 * 0.1 * 0.12 = 0.0048
§ P(Y = ham, F1 = yes, F2 = 1) = P(Y = ham)  P(F1 = yes | ham) P(F2 = 1 | ham)

= 0.6 * 0.7 * 0.07 = 0.0294

§ Normalize:
§ P(Y = spam | F1 = yes, F2 = 1) = 0.0048 / (0.0048+0.0294) = 0.14
§ P(Y = ham | F1 = yes, F2 = 1) = 0.0294 / (0.0048+0.0294) = 0.86

§ Classification result:
§ 14% chance the email is spam. 86% chance it’s ham.
§ Or, if you don’t need probabilities, note that 0.0294 > 0.0048 and guess ham.

Y: The label (spam or ham)

Y P(Y)

ham 0.6

spam 0.4

F1: do I know the sender?

F1 Y P(F1|Y)

yes ham 0.7

no ham 0.3

yes spam 0.1

no spam 0.9

F2: # of occurrences of FREE

F2 Y P(F2|Y)

0 ham 0.85

1 ham 0.07

2 ham 0.08

0 spam 0.75

1 spam 0.12

2 spam 0.13

Y

F1 F2



General Naïve Bayes

§ A general Naive Bayes model:

§ We only have to specify how each feature depends on the class
§ Total number of parameters is linear in n
§ Model is very simplistic, but often works anyway

Y

F1 FnF2

|Y| parameters

n x |F| x |Y| 
parameters

|Y| x |F|n values



Inference for Naïve Bayes

§ Goal: compute posterior distribution over label variable Y
§ Step 1: get joint probability of label and evidence for each label

§ Step 2: sum to get probability of evidence

§ Step 3: normalize by dividing Step 1 by Step 2

+



Naïve Bayes for Digits

§ Naïve Bayes: Assume all features are independent effects of the label

§ Simple digit recognition version:
§ One feature (variable) Fij for each grid position <i,j>
§ Feature values are on / off, based on whether intensity
 is more or less than 0.5 in underlying image
§ Each input maps to a feature vector, e.g.

§ Here: lots of features, each is binary valued

§ Naïve Bayes model:

§ What do we need to learn?

Y

F0,0 F15,15F0,1



Naïve Bayes for Digits: Parameters

1 0.1
2 0.1
3 0.1
4 0.1
5 0.1
6 0.1
7 0.1
8 0.1
9 0.1
0 0.1

1 0.01
2 0.05
3 0.05
4 0.30
5 0.80
6 0.90
7 0.05
8 0.60
9 0.50
0 0.80

1 0.05
2 0.01
3 0.90
4 0.80
5 0.90
6 0.90
7 0.25
8 0.85
9 0.60
0 0.80



Naïve Bayes for Text

§ Bag-of-words Naïve Bayes:
§ Features: Wi is the word at positon i
§ As before: predict label conditioned on feature variables (spam vs. ham)
§ As before: assume features are conditionally independent given label
§ New: each Wi is identically distributed

§ Generative model:

§ “Tied” distributions and bag-of-words
§ Usually, each variable gets its own conditional probability distribution P(F|Y)
§ In a bag-of-words model

§ Each position is identically distributed
§ All positions share the same conditional probs P(W|Y)
§ Why make this assumption?

§ Called “bag-of-words” because model is insensitive to word order or reordering

Wi = word at position i, not ith 
word in the dictionary!

free our offer try please  

how many variables are there?
how many values?

please try our free offer

Y

W1 WnW2



Naïve Bayes for Text: Parameters

§ Model:

§ What are the parameters?

the :  0.0156
to  :  0.0153
and :  0.0115
of  :  0.0095
you :  0.0093
a   :  0.0086
with:  0.0080
from:  0.0075
...

the :  0.0210
to  :  0.0133
of  :  0.0119
2002:  0.0110
with:  0.0108
from:  0.0107
and :  0.0105
a   :  0.0100
...

ham : 0.66
spam: 0.33



Spam Example

Word P(w|spam) P(w|ham) Tot Spam Tot Ham
(prior) 0.33333 0.66666 -1.1 -0.4
Gary 0.00002 0.00021 -11.8 -8.9
would 0.00069 0.00084 -19.1 -16.0
you 0.00881 0.00304 -23.8 -21.8
like 0.00086 0.00083 -30.9 -28.9
to 0.01517 0.01339 -35.1 -33.2
lose 0.00008 0.00002 -44.5 -44.0
weight 0.00016 0.00002 -53.3 -55.0
while 0.00027 0.00027 -61.5 -63.2
you 0.00881 0.00304 -66.2 -69.0
sleep 0.00006 0.00001 -76.0 -80.5



General Naïve Bayes

§ What do we need in order to use Naïve Bayes?

§ Inference method (we just saw this part)
§ Start with a bunch of probabilities: P(Y) and the P(Fi|Y) tables
§ Use standard inference to compute P(Y|F1…Fn)
§ Nothing new here

§ Estimates of local conditional probability tables
§ P(Y), the prior over labels
§ P(Fi|Y) for each feature (evidence variable)
§ These probabilities are collectively called the parameters of 

the model and denoted by q
§ Up until now, we assumed these appeared by magic, but they 

typically come from training data counts



Parameter Estimation



Parameter Estimation

§ Estimating the distribution of a random variable

§ Elicitation: ask a human (why is this hard?)

§ Empirically: use training data (learning!)
§ Example: The parameter θ is the true fraction of red beans in the jar. 

You don’t know θ but would like to estimate it.

§ Collecting training data: You randomly pull out 3 beans:

§ Estimating θ using counts, you guess 2/3 of beans in the jar are red.

§ Can we mathematically show that using counts is the “right” way to 
estimate θ?

r b b

r bb
rb b

r bb

r

b

b

r r b



Parameter Estimation with Maximum Likelihood

§ θ is the true fraction of red beans in the jar (i.e. P(red | θ) = θ)
§ Can we mathematically show that using counts is the “right” way to estimate θ?
§ Maximum likelihood estimation: Choose the θ value that maximizes the probability 

of the observation
§ In other words, choose the θ value that maximizes P(observation | θ)
§ For our problem:

   P(observation | θ)

= P(randomly selected 2 red and 1 blue | θ of beans are red)

= P(red | θ) * P(red | θ) * P(blue | θ)

= θ2 (1 - θ)

§ We want to compute:

argmax θ2 (1 - θ)
     θ



Parameter Estimation with Maximum Likelihood

§ We want to compute:

argmax θ2 (1- θ)
     θ

§ Set derivative to 0, and solve!
§ Common issue: The likelihood (expression we’re maxing) is the product of a lot of probabilities. 

This can lead to complicated derivatives.
§ Solution: Maximize the log-likelihood instead. Useful fact:

argmax f(θ) = argmax ln f(θ)
   θ                              θ



Parameter Estimation with Maximum Likelihood
Find θ that maximizes likelihood

Find θ that maximizes log-likelihood (will be the same θ)

Set derivative to 0

Logarithm rule: products become sums

Logarithm rule: exponentiation becomes multiplication

Now we can derive each term of the original product separately

Reminder: Derivative of ln(θ) is 1/θ

Use algebra to solve for θ. If we used arbitrary red and blue 
counts r and b instead of r=2 and b=1, we’d get θ = r / (r+b), the 
count estimate.



Parameter Estimation with Maximum Likelihood (General Case)

§ Model:

§ Data: draw 𝑁 balls, 𝑁! come up red and 𝑁" come up blue 
§ Dataset 𝐷 = 𝑥!, … , 𝑥"  of N ball draws

𝑃 𝐷 𝜃 =(
#

𝑃(𝑥#|𝜃) = 𝜃"! ⋅ 1 − 𝜃 ""

§ Maximum Likelihood Estimation: find 𝜃	that maximizes P(D|𝜃):
 
/𝜃 = argmax

$
	𝑃 𝐷|𝜃 = argmax

$
log 𝑃(𝐷|𝜃)

Take derivative and set to 0:

𝜕 log 𝑃 𝐷|𝜃
𝜕𝜃

=
𝑁%
𝜃
−

𝑁&
1 − 𝜃

= 0

𝑋 red blue

𝑃(𝑋|𝜃) 𝜃 1 − 𝜃

𝑁! 	log 𝜃 + 𝑁"	log(1 − 𝜃)

→ 0𝜃 =
𝑁!

𝑁! + 𝑁"
=
#	of	red	balls
total	#	of	balls



Parameter Estimation with Maximum Likelihood (General Case)

§ Maximum Likelihood Estimation: find 𝜃	that maximizes P(D|𝜃):
 /𝜃 = argmax

$
	𝑃 𝐷|𝜃 = argmax

$
log 𝑃(𝐷|𝜃)

Take derivative and set to 0:

;
;< log 𝑃(𝐷|𝜃) =

;
;< [𝑁!	log 𝜃 + 𝑁"	log(1 − 𝜃)]

 = 𝑁!
;
;<

log 𝜃 + 𝑁"
;
;<

log 1 − 𝜃

 = 𝑁!
=
<
+𝑁"

=
=><

⋅ −1

 = 𝑁! 1 − 𝜃 −	𝑁"𝜃

	 = 𝑁! − 𝜃(𝑁!+𝑁") = 0

 → 7𝜃 = ?!
?!@?"

𝑁! 	log 𝜃 + 𝑁"	log(1 − 𝜃)



Parameter Estimation with Maximum Likelihood

§ How do we estimate the conditional probability tables?

§ Maximum Likelihood, which corresponds to counting

§ Need to be careful though … let’s see what can go wrong..
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Degree 15 polynomial

What is the best way to fit this data?

x

y



Empirical Risk Minimization

§ How should we evaluate the quality of our model?
§ Empirical risk minimization

§ Basic principle of machine learning
§ We want the model (classifier, etc) that does best on the true test distribution
§ Don’t know the true distribution so pick the best model on our actual training set
§ Finding “the best” model on the training set is phrased as an optimization problem

§ Main worry: overfitting to the training set
§ Better with more training data (less sampling variance, training more like test)
§ Better if we limit the complexity of our hypotheses (regularization and/or small 

hypothesis spaces)



Underfitting and Overfitting



Example: Overfitting

2 wins!!



Example: Overfitting

§ relative probabilities (odds ratios):

south-west : inf
nation     : inf
morally    : inf
nicely     : inf
extent     : inf
seriously  : inf
...

What went wrong here?

screens    : inf
minute     : inf
guaranteed : inf
$205.00    : inf
delivery   : inf
signature  : inf
...



Generalization and Overfitting

§ Relative frequency parameters will overfit the training data!
§ Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at 

test time
§ Unlikely that every occurrence of “minute” is 100% spam
§ Unlikely that every occurrence of “seriously” is 100% ham
§ What about all the words that don’t occur in the training set at all?
§ In general, we can’t go around giving unseen events zero probability

§ As an extreme case, imagine using the entire email as the only feature
§ Would get the training data perfect (if deterministic labeling)
§ Wouldn’t generalize at all
§ Just making the bag-of-words assumption gives us some generalization, but isn’t enough

§ To generalize better: we need to smooth or regularize the estimates



Important Concepts
§ Data: labeled instances, e.g. emails marked spam/ham

§ Training set
§ Held out set
§ Test set

§ Features: attribute-value pairs which characterize each 
input

§ Experimentation cycle
§ Learn parameters (e.g. model probabilities) on training set
§ (Tune hyperparameters on held-out set)
§ Compute accuracy on test set
§ Very important: never “peek” at the test set!

§ Evaluation
§ Accuracy: fraction of instances predicted correctly

§ Overfitting and generalization
§ Want a classifier which does well on test data
§ Overfitting: fitting the training data very closely, but not 

generalizing well
§ Underfitting: fits the training set poorly

Training
Data

Held-Out
Data

Test
Data



What we did today

§ Discussed various learning problems
§ Supervised (classification or regression), reinforcement, unsupervised

§ Saw our first machine learning algorithm: Naïve Bayes
§ Model is a Bayes Net where features are independent given class label
§ Classification is just inference in Bayes Nets
§ Learning is just counting feature occurrences in training data

§ Saw Maximum Likelihood as a principled way to estimate 
parameters
§ Maximize probability of the data given model parameters
§ For Naïve Bayes, we solved maximization problem analytically

§ Saw that fitting training data too well can cause issues (Overfitting)



Next: Smoothing



Next: Perceptrons


