
CS 188: Artificial Intelligence
Naïve Bayes and Perceptrons

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan, Sergey Levine. All CS188 materials are at http://ai.berkeley.edu.]

Last Time
§ Classification: given inputs x, predict labels (classes) y

§ Convert input x into a collection of features 𝑓!, … , 𝑓"

x
(input)

y
(prediction)

f
(features)

Feature
extraction

Machine
learning

Last Time
§ Naïve Bayes model:	𝑃 𝑌, 𝐹!, … , 𝐹" = 𝑃 𝑌 ∏#𝑃 𝐹# 𝑌)

§ Features and label are random variables
§ Input features 𝐹!, … , 𝐹" are conditionally independent given label Y
§ Parameters 𝜃: probability tables 𝑃 𝑌 , 𝑃 𝐹!|𝑌 , … , 𝑃(𝐹"|𝑌)

§ Classification is inference in a Bayes Net:
§ Inference by enumeration
§ Given features 𝑓!, … , 𝑓" probability over class labels is:

𝑃 𝑌 𝑓!, … , 𝑓" ∝ 𝑃 𝑌, 𝑓!, … , 𝑓" = 𝑃 𝑌 .
#

𝑃 𝑓# 𝑌

Y

F1 FnF2

Enumerate over every label y:

Normalize

Last Time
§ Naïve Bayes model:	𝑃 𝑌, 𝐹!, … , 𝐹" = 𝑃 𝑌 ∏#𝑃 𝐹# 𝑌)

§ Features and label are random variables
§ Input features 𝐹!, … , 𝐹" are conditionally independent given label Y
§ Parameters 𝜃: probability tables 𝑃 𝑌 , 𝑃 𝐹!|𝑌 , … , 𝑃(𝐹"|𝑌)

§ Learn parameters by counting:

§ 𝑃(observing	𝑥) = #	&'	()*+,	-	&../0+1
(&(23	#	&'	+4+5(,

§ Comes from Maximum Likelihood estimation: find 𝜃	that maximizes P observations 𝜃
§ 𝜃	 = argmax

!
	𝑃 observations|𝜃

§ Take derivative and set to 0
§ In practice, maximize log P instead because derivatives are easier

§ In general for Naïve Bayes maximum likelihood estimates of probability tables are:

Y

F1 FnF2

r r b 𝑃(red) =
2
3For example:

𝑃 𝑓	 𝑦) =
#	of	occurences	of	feature	𝑓	and	class	 𝑦

total	#	of	occurences	of	class	𝑦
𝑃(𝑦) =

#	of	occurences	of	class	 𝑦
total	#	of	observations

Underfitting and Overfitting

Example: Overfitting

2 wins!!

Example: Overfitting

§ relative probabilities (odds ratios):

south-west : inf
nation : inf
morally : inf
nicely : inf
extent : inf
seriously : inf
...

What went wrong here?

screens : inf
minute : inf
guaranteed : inf
$205.00 : inf
delivery : inf
signature : inf
...

Generalization and Overfitting

§ Relative frequency parameters will overfit the training data!
§ Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at

test time
§ Unlikely that every occurrence of “minute” is 100% spam
§ Unlikely that every occurrence of “seriously” is 100% ham
§ What about all the words that don’t occur in the training set at all?
§ In general, we can’t go around giving unseen events zero probability

§ As an extreme case, imagine using the entire email as the only feature
§ Would get the training data perfect (if deterministic labeling)
§ Wouldn’t generalize at all
§ Just making the bag-of-words assumption gives us some generalization, but isn’t enough

§ To generalize better: we need to smooth or regularize the estimates

Smoothing

Unseen Events

Laplace Smoothing

§ Laplace’s estimate:
§ Pretend you saw every outcome

once more than you actually did
r r b

Laplace Smoothing

§ Laplace’s estimate (extended):
§ Pretend you saw every outcome k extra times

§ What’s Laplace with k = 0?
§ k is the strength of the prior

r r b

Real NB: Smoothing

§ For real classification problems, smoothing is critical
§ New odds ratios:

helvetica : 11.4
seems : 10.8
group : 10.2
ago : 8.4
areas : 8.3
...

verdana : 28.8
Credit : 28.4
ORDER : 27.2
 : 26.9
money : 26.5
...

Do these make more sense?

Tuning

Tuning on Held-Out Data

§ Now we’ve got two kinds of unknowns
§ Parameters: the probabilities P(X|Y), P(Y)
§ Hyperparameters: e.g. the amount of

smoothing k

§ What should we learn where?
§ Learn parameters from training data
§ Tune hyperparameters on different data

§ Why?
§ For each value of the hyperparameters, train

and test on the held-out data
§ Choose the best value and do a final test on

the test data

Important Concepts
§ Data: labeled instances, e.g. emails marked spam/ham

§ Training set
§ Held out set
§ Test set

§ Features: attribute-value pairs which characterize each
input

§ Experimentation cycle
§ Learn parameters (e.g. model probabilities) on training set
§ (Tune hyperparameters on held-out set)
§ Compute accuracy on test set
§ Very important: never “peek” at the test set!

§ Evaluation
§ Accuracy: fraction of instances predicted correctly

§ Overfitting and generalization
§ Want a classifier which does well on test data
§ Overfitting: fitting the training data very closely, but not

generalizing well
§ Underfitting: fits the training set poorly

Training
Data

Held-Out
Data

Test
Data

Practical Tip: Baselines

§ First step: get a baseline
§ Baselines are very simple “straw man” procedures
§ Help determine how hard the task is
§ Help know what a “good” accuracy is

§ Weak baseline: most frequent label classifier
§ Gives all test instances whatever label was most common in the training set
§ E.g. for spam filtering, might label everything as ham
§ Accuracy might be very high if the problem is skewed
§ E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

§ For real research, usually use previous work as a (strong) baseline

Perceptrons

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

SPAM
or
HAM

PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1
...

“2”

Some (Simplified) Biology

§ Very loose inspiration: human neurons

Linear Classifiers

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1

w2

w3
>0?

Weights
§ Binary case: compare features to a weight vector
§ Learning: figure out the weight vector from examples

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
...

Dot product positive
means the positive class

Decision Rules

Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

free : 4
money : 2

0 1
0

1

2

free
m

on
ey

Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m

on
ey

Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM

Weight Updates

Learning: Binary Perceptron

§ Start with weights w = 0
§ For each training instance f(x), y*:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!

§ If wrong: adjust the weight vector

Learning: Binary Perceptron

§ Start with weights w = 0
§ For each training instance f(x), y*:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

Learning: Binary Perceptron

§ Start with weights w = 0
§ For each training instance f(x), y*:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

Before update: After update:

𝑤 ⋅ 𝑓 𝑤 + 𝑦∗ ⋅ 𝑓 ⋅ 𝑓
= 𝑤 ⋅ 𝑓 + 𝑦∗ ⋅ 𝑓 ⋅ 𝑓

Example: Perceptron

Iteration 0: x: “win the vote” f(x): [1 1 0 1 1] y*: -1

Iteration 1: x: “win the election” f(x): [1 1 0 0 1] y*: -1

Iteration 2: x: “win the game” f(x): [1 1 1 0 1] y*: +1

Iteration 3: x: “win the game” f(x): [1 1 1 0 1] y*: +1

BIAS

win

game

vote

the

1

0

0

0

0

1𝑤 ⋅ 𝑓 𝑥 :

0

-1

0

-1

-1

-2

0

-1

0

-1

-1

-2

1

0

1

-1

0

2

Example: Perceptron

§ Separable Case

Multiclass Decision Rule

§ If we have multiple classes:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples f(x), y* one by one
§ Predict with current weights

§ If correct, no change!
§ If wrong: lower score of wrong answer, raise

score of right answer

Example: Multiclass Perceptron

Iteration 0: x: “win the vote” f(x): [1 1 0 1 1] y*: politics

Iteration 1: x: “win the election” f(x): [1 1 0 0 1] y*: politics

Iteration 2: x: “win the game” f(x): [1 1 1 0 1] y*: sports

BIAS

win

game

vote

the

1

0

0

0

0

1𝑤 ⋅ 𝑓 𝑥 :

0

-1

0

-1

-1

-2

0

-1

0

-1

-1

-2

1

0

1

-1

0

BIAS

win

game

vote

the

0

0

0

0

0

0𝑤 ⋅ 𝑓 𝑥 :

1

1

0

1

1

3

1

1

0

1

1

3

0

0

-1

1

0

BIAS

win

game

vote

the

0

0

0

0

0

0𝑤 ⋅ 𝑓 𝑥 :

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Properties of Perceptrons

§ Separability: true if some parameters get the training set
perfectly correct

§ Convergence: if the training is separable, perceptron will
eventually converge (binary case)

§ Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

Separable

Non-Separable

Problems with the Perceptron

§ Noise: if the data isn’t separable,
weights might thrash
§ Averaging weight vectors over time

can help (averaged perceptron)

§ Mediocre generalization: finds a
“barely” separating solution

§ Overtraining: test / held-out
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting

Next Lecture: Improving Perceptron & Optimization

