
Announcements

§ Homework 8 due today (Nov 7) at 11:59pm PT

§ Project 4 extended! Now due this Friday (Nov 10) at 11:59pm PT

§ HW 4 part 2 and HW 5 part 2 regrades at due this Friday (Nov 10) 
at 11:59pm PT



CS 188: Artificial Intelligence
Perceptrons, Logistic Regression and Optimization

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan, Sergey Levine.  All CS188 materials are at http://ai.berkeley.edu.]



Last Time: Perceptron

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1

w2

w3
>0?



Last Time: Perceptron

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1

w2

w3
>0?

Originated from computationally modeling neurons:



Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS  : -3
free  :  4
money :  2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM



Learning: Binary Perceptron

§ Start with weights w = 0
§ For each training instance f(x), y*:

§ Classify with current weights

§ If correct: (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.

Before update: After update:

𝑤 ⋅ 𝑓 𝑤 + 𝑦∗ ⋅ 𝑓 ⋅ 𝑓
= 𝑤 ⋅ 𝑓 + 𝑦∗ ⋅ 𝑓 ⋅ 𝑓



???

Learning: Binary Perceptron

§ Start with weights w = 0
§ For each training instance f(x), y*:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.

“When an axon of cell A is near enough to excite cell B 
and repeatedly or persistently takes part in firing it, some 
growth process or metabolic change takes place in one or 
both cells such that A's efficiency, as one of the cells firing 
B, is increased.” 
 - Donald Hebb, Organization of Behavior, 1949

TL;DR: “Neurons that fire together, wire together”

Inspired by a model of how neural connections develop: 



Learning: Binary Perceptron

§ Start with weights w = 0
§ For each training instance f(x), y*:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.

Hardware implementation built by Rosenblatt in 1957:

[Wikipedia]



Multiclass Decision Rule

§ If we have multiple classes:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples f(x), y* one by one
§ Predict with current weights

§ If correct: no change!
§ If wrong: lower score of wrong answer, raise 

score of right answer

Predicted Class

True Class



Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples f(x), y* one by one
§ Predict with current weights

§ If correct: no change!
§ If wrong: lower score of wrong answer, raise 

score of right answer

Before update: After update:

Score of wrong class:
𝑤" ⋅ 𝑓

Score of right class:
𝑤"∗ ⋅ 𝑓

Score of wrong class:
𝑤" − 𝑓 ⋅ 𝑓

= 𝑤" ⋅ 𝑓 − 𝑓 ⋅ 𝑓

Score of right class:
𝑤"∗ ⋅ 𝑓 + 𝑓 ⋅ 𝑓



Example: Multiclass Perceptron

Iteration 0: x: “win the vote”   f(x): [1 1 0 1 1]   y*: politics 

Iteration 1: x: “win the election”  f(x): [1 1 0 0 1]   y*: politics 

Iteration 2: x: “win the game”   f(x): [1 1 1 0 1]   y*: sports

BIAS

win

game

vote

the

1

0

0

0

0

1𝑤 ⋅ 𝑓 𝑥 :

0

-1

0

-1

-1

-2

0

-1

0

-1

-1

-2

1

0

1

-1

0

BIAS

win

game

vote

the

0

0

0

0

0

0𝑤 ⋅ 𝑓 𝑥 :

1

1

0

1

1

3

1

1

0

1

1

3

0

0

-1

1

0

BIAS

win

game

vote

the

0

0

0

0

0

0𝑤 ⋅ 𝑓 𝑥 :

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



Properties of Perceptrons

§ Separability: true if some parameters get the training set 
perfectly correct

§ Convergence: if the training is separable, perceptron will 
eventually converge (binary case)

§ Mistake Bound: the maximum number of mistakes (binary 
case) related to the margin or degree of separability

Separable

Non-Separable

#	of	mistakes	during	training <
#	of	features

width	of	margin !



Problems with the Perceptron

§ Noise: if the data isn’t separable, 
weights might thrash
§ Averaging weight vectors over time 

can help (averaged perceptron)

§ Mediocre generalization: finds a 
“barely” separating solution

§ Overtraining: test / held-out 
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting



Improving the Perceptron



Non-Separable Case: Deterministic Decision
Even the best linear boundary makes at least one mistake



Non-Separable Case: Probabilistic Decision

0.5 | 0.5
0.3 | 0.7

0.1 | 0.9

0.7 | 0.3
0.9 | 0.1



How to get probabilistic decisions?

§ Perceptron scoring:
§ If           very positive à want probability of + going to 1
§ If            very negative à want probability of + going to 0

z = w · f(x)
z = w · f(x)

z = w · f(x)

𝑧 = 0

𝑤

𝑧 > 0

𝑧 < 0



How to get probabilistic decisions?

§ Perceptron scoring:
§ If           very positive à want probability of + going to 1
§ If            very negative à want probability of + going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z

=
𝑒4

𝑒4 + 1



How to get probabilistic decisions?

§ Perceptron scoring:
§ If           very positive à want probability of + going to 1
§ If            very negative à want probability of + going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z

= Logistic Regression

 𝑃 𝑦 = 	+1	 𝑥	; 𝑤) = !
!"#!"⋅$(&)

 
 𝑃 𝑦 = −1	 𝑥	; 𝑤) = 1 − !

!"#!"⋅$(&)



A 1D Example

definitely blue definitely rednot sure

𝑃 𝑟𝑒𝑑 𝑥	; 𝑤 = 𝜙 𝑤 ⋅ 𝑓(𝑥) =
1

1 + 𝑒56⋅8(:)

𝑃 𝑟𝑒𝑑 𝑥

𝑓(𝑥)



𝑤 = 10

𝑤 = 1

A 1D Example: varying w

𝑃 𝑟𝑒𝑑 𝑥

𝑓(𝑥)

𝑃 𝑟𝑒𝑑 𝑥	; 𝑤 = 𝜙 𝑤 ⋅ 𝑓(𝑥) =
1

1 + 𝑒$%⋅'())

𝑤 = ∞



Best w? 

§ Recall maximum likelihood estimation: Choose the w value that 
maximizes the probability of the observed (training) data



Best w? 

§ Recall maximum likelihood estimation: Choose the w value that 
maximizes the probability of the observed (training) data



Separable Case: Deterministic Decision – Many Options



Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3



Multiclass Logistic Regression



Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y:       z	=

§ Prediction highest score wins

§ How to make the scores into probabilities? 

§ In general:  softmax 𝑧,, . . . , 𝑧- = [ .
!"

∑# 0
!#
, … , .

!$

∑# 0
!#
]

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations



Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y:       z	=

§ Prediction highest score wins

§ How to make the scores into probabilities? 

= Multi-Class Logistic Regression

 𝑃 𝑦	 𝑥	; 𝑤) = !!"⋅$(&)

∑"( !
!"(⋅$(&)



Best w? 

§ Recall maximum likelihood estimation: Choose the w value that 
maximizes the probability of the observed (training) data



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression



Softmax and Sigmoid

§ Recall: Binary perceptron is a special case of multi-class perceptron
§ Multi-class: Compute                  for each class y, pick class with the highest activation
§ Binary case:

Let the weight vector of +1 be w (which we learn). 
Let the weight vector of -1 always be 0 (constant).

§ Binary classification as a multi-class problem:
Activation of negative class is always 0.
If w · f is positive, then activation of +1 (w · f) is higher than -1 (0).
If w · f is negative, then activation of -1 (0) is higher than +1 (w · f).

Softmax

with wred = 0 becomes:

Sigmoid



Naïve Bayes vs Logistic Regression
Naïve Bayes Logistic Regression

Model Joint over all features and label:
𝑃(𝑌, 𝐹", 𝐹!, … )

Conditional:
𝑃 𝑦	 𝑓", 𝑓!, … ; 	𝑤)

Predicted class probabilities Inference in a Bayes Net:
𝑃 𝑌	 𝑓 ∝ 𝑃 𝑌 	𝑃(𝑓"|𝑌)…

Directly output label:
𝑃 𝑦 = +1	 𝑓; 	𝑤) 	= 1/(1 + 𝑒#$⋅&)

Features Discrete Discrete or Continuous

Parameters Entries of probability tables 𝑃(𝑌) 
and 𝑃(𝐹'|𝑌)

Weight vector 𝑤

Learning Counting occurrences of events Iterative numerical optimization



How do we maximize functions?

In general, cannot always take derivative and set to 0

Use numerical optimization!

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)



Hill Climbing

Recall from CSPs lecture: simple, general idea
Start wherever
Repeat: move to the best neighboring state
If no neighbors better than current, quit

What’s particularly tricky when hill-climbing for multiclass 
logistic regression?
• Optimization over a continuous space
• Infinitely many neighbors!
• How to do this efficiently?



Next Time: Optimization and Neural Networks!


